ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-07-25
    Description: During infection, enterohaemorrhagic Escherichia coli (EHEC) takes over the actin cytoskeleton of eukaryotic cells by injecting the EspF(U) protein into the host cytoplasm. EspF(U) controls actin by activating members of the Wiskott-Aldrich syndrome protein (WASP) family. Here we show that EspF(U) binds to the autoinhibitory GTPase binding domain (GBD) in WASP proteins and displaces it from the activity-bearing VCA domain (for verprolin homology, central hydrophobic and acidic regions). This interaction potently activates WASP and neural (N)-WASP in vitro and induces localized actin assembly in cells. In the solution structure of the GBD-EspF(U) complex, EspF(U) forms an amphipathic helix that binds the GBD, mimicking interactions of the VCA domain in autoinhibited WASP. Thus, EspF(U) activates WASP by competing directly for the VCA binding site on the GBD. This mechanism is distinct from that used by the eukaryotic activators Cdc42 and SH2 domains, which globally destabilize the GBD fold to release the VCA. Such diversity of mechanism in WASP proteins is distinct from other multimodular systems, and may result from the intrinsically unstructured nature of the isolated GBD and VCA elements. The structural incompatibility of the GBD complexes with EspF(U) and Cdc42/SH2, plus high-affinity EspF(U) binding, enable EHEC to hijack the eukaryotic cytoskeletal machinery effectively.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2719906/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2719906/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cheng, Hui-Chun -- Skehan, Brian M -- Campellone, Kenneth G -- Leong, John M -- Rosen, Michael K -- R01 AI046454/AI/NIAID NIH HHS/ -- R01 AI046454-09/AI/NIAID NIH HHS/ -- R01 GM056322/GM/NIGMS NIH HHS/ -- R01 GM056322-12A1/GM/NIGMS NIH HHS/ -- R01-AI46454/AI/NIAID NIH HHS/ -- R01-GM56322/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2008 Aug 21;454(7207):1009-13. doi: 10.1038/nature07160. Epub 2008 Jul 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18650809" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Amino Acid Sequence ; Animals ; Carrier Proteins/chemistry/*metabolism ; Cells, Cultured ; Enterohemorrhagic Escherichia coli/chemistry/genetics/*metabolism ; Escherichia coli Proteins/chemistry/*metabolism ; Fibroblasts/cytology ; Mice ; Models, Molecular ; Molecular Sequence Data ; Protein Structure, Tertiary ; Wiskott-Aldrich Syndrome Protein/chemistry/*metabolism ; Wiskott-Aldrich Syndrome Protein, Neuronal/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-11-27
    Description: FocA is a representative member of the formate-nitrite transporter family, which transports short-chain acids in bacteria, archaea, fungi, algae and parasites. The structure and transport mechanism of the formate-nitrite transporter family remain unknown. Here we report the crystal structure of Escherichia coli FocA at 2.25 A resolution. FocA forms a symmetric pentamer, with each protomer consisting of six transmembrane segments. Despite a lack of sequence homology, the overall structure of the FocA protomer closely resembles that of aquaporin and strongly argues that FocA is a channel, rather than a transporter. Structural analysis identifies potentially important channel residues, defines the channel path and reveals two constriction sites. Unlike aquaporin, FocA is impermeable to water but allows the passage of formate. A structural and biochemical investigation provides mechanistic insights into the channel activity of FocA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Yi -- Huang, Yongjian -- Wang, Jiawei -- Cheng, Chao -- Huang, Weijiao -- Lu, Peilong -- Xu, Ya-Nan -- Wang, Pengye -- Yan, Nieng -- Shi, Yigong -- England -- Nature. 2009 Nov 26;462(7272):467-72. doi: 10.1038/nature08610.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ministry of Education Protein Science Laboratory, Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19940917" target="_blank"〉PubMed〈/a〉
    Keywords: Aquaporins/*chemistry/metabolism ; Crystallography, X-Ray ; Escherichia coli/chemistry/genetics/metabolism ; Escherichia coli Proteins/*chemistry/genetics/metabolism ; Formates/metabolism ; Liposomes/chemistry/metabolism ; Membrane Transport Proteins/*chemistry/genetics/metabolism ; Models, Molecular ; Molecular Mimicry ; Mutation ; Permeability ; Protein Structure, Quaternary ; Structure-Activity Relationship ; Water/analysis/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-05-10
    Description: Energy-dependent quenching of excess absorbed light energy (qE) is a vital mechanism for regulating photosynthetic light harvesting in higher plants. All of the physiological characteristics of qE have been positively correlated with charge transfer between coupled chlorophyll and zeaxanthin molecules in the light-harvesting antenna of photosystem II (PSII). We found evidence for charge-transfer quenching in all three of the individual minor antenna complexes of PSII (CP29, CP26, and CP24), and we conclude that charge-transfer quenching in CP29 involves a delocalized state of an excitonically coupled chlorophyll dimer. We propose that reversible conformational changes in CP29 can "tune" the electronic coupling between the chlorophylls in this dimer, thereby modulating the energy of the chlorophyll-zeaxanthin charge-transfer state and switching on and off the charge-transfer quenching during qE.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ahn, Tae Kyu -- Avenson, Thomas J -- Ballottari, Matteo -- Cheng, Yuan-Chung -- Niyogi, Krishna K -- Bassi, Roberto -- Fleming, Graham R -- New York, N.Y. -- Science. 2008 May 9;320(5877):794-7. doi: 10.1126/science.1154800.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18467588" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis Proteins/chemistry/genetics/*physiology ; Chlorophyll/physiology ; Chlorophyll Binding Proteins ; Chloroplast Proteins ; Electron Transport ; Electrophysiology ; Light ; Light-Harvesting Protein Complexes/chemistry/genetics/*physiology ; Lutein/metabolism ; Models, Molecular ; Photosystem II Protein Complex/chemistry/genetics/*physiology ; Protein Conformation ; Recombinant Proteins/metabolism ; Ribonucleoproteins ; Structure-Activity Relationship ; Xanthophylls/metabolism ; Zeaxanthins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...