ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (179)
  • Models, Molecular  (160)
  • Crystallography, X-Ray  (122)
  • 2005-2009  (179)
Collection
  • Articles  (179)
Keywords
Years
Year
  • 1
    Publication Date: 2009-05-30
    Description: Transcribing RNA polymerases oscillate between three stable states, two of which, pre- and posttranslocated, were previously subjected to x-ray crystal structure determination. We report here the crystal structure of RNA polymerase II in the third state, the reverse translocated, or "backtracked" state. The defining feature of the backtracked structure is a binding site for the first backtracked nucleotide. This binding site is occupied in case of nucleotide misincorporation in the RNA or damage to the DNA, and is termed the "P" site because it supports proofreading. The predominant mechanism of proofreading is the excision of a dinucleotide in the presence of the elongation factor SII (TFIIS). Structure determination of a cocrystal with TFIIS reveals a rearrangement whereby cleavage of the RNA may take place.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2718261/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2718261/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Dong -- Bushnell, David A -- Huang, Xuhui -- Westover, Kenneth D -- Levitt, Michael -- Kornberg, Roger D -- GM036559/GM/NIGMS NIH HHS/ -- GM041455/GM/NIGMS NIH HHS/ -- GM049985/GM/NIGMS NIH HHS/ -- K99 GM085136/GM/NIGMS NIH HHS/ -- K99 GM085136-01/GM/NIGMS NIH HHS/ -- R00 GM085136/GM/NIGMS NIH HHS/ -- R01 GM036659/GM/NIGMS NIH HHS/ -- R01 GM041455/GM/NIGMS NIH HHS/ -- R01 GM049985/GM/NIGMS NIH HHS/ -- R01 GM049985-16/GM/NIGMS NIH HHS/ -- R37 GM036659/GM/NIGMS NIH HHS/ -- R37 GM036659-22/GM/NIGMS NIH HHS/ -- R37 GM041455/GM/NIGMS NIH HHS/ -- R37 GM041455-20/GM/NIGMS NIH HHS/ -- U54 GM072970/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 May 29;324(5931):1203-6. doi: 10.1126/science.1168729.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19478184" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pair Mismatch ; Crystallography, X-Ray ; Guanosine Monophosphate/chemistry/metabolism ; Models, Molecular ; Nucleic Acid Conformation ; Oligoribonucleotides/chemistry/*metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA/chemistry/*metabolism ; RNA Polymerase II/*chemistry/*metabolism ; Saccharomyces cerevisiae/*enzymology ; *Transcription, Genetic ; Transcriptional Elongation Factors/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-06-27
    Description: Escherichia coli diacylglycerol kinase (DAGK) represents a family of integral membrane enzymes that is unrelated to all other phosphotransferases. We have determined the three-dimensional structure of the DAGK homotrimer with the use of solution nuclear magnetic resonance. The third transmembrane helix from each subunit is domain-swapped with the first and second transmembrane segments from an adjacent subunit. Each of DAGK's three active sites resembles a portico. The cornice of the portico appears to be the determinant of DAGK's lipid substrate specificity and overhangs the site of phosphoryl transfer near the water-membrane interface. Mutations to cysteine that caused severe misfolding were located in or near the active site, indicating a high degree of overlap between sites responsible for folding and for catalysis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2764269/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2764269/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Van Horn, Wade D -- Kim, Hak-Jun -- Ellis, Charles D -- Hadziselimovic, Arina -- Sulistijo, Endah S -- Karra, Murthy D -- Tian, Changlin -- Sonnichsen, Frank D -- Sanders, Charles R -- R01 GM047485/GM/NIGMS NIH HHS/ -- R01 GM047485-17/GM/NIGMS NIH HHS/ -- R01 GM47485/GM/NIGMS NIH HHS/ -- T32 NS007491/NS/NINDS NIH HHS/ -- T32 NS007491-09/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2009 Jun 26;324(5935):1726-9. doi: 10.1126/science.1171716.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19556511" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Biocatalysis ; Catalytic Domain ; Cell Membrane/enzymology ; Diacylglycerol Kinase/*chemistry/metabolism ; Escherichia coli/*enzymology ; Escherichia coli Proteins/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nuclear Magnetic Resonance, Biomolecular ; Protein Conformation ; Protein Folding ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-12-08
    Description: The site on HIV-1 gp120 that binds to the CD4 receptor is vulnerable to antibodies. However, most antibodies that interact with this site cannot neutralize HIV-1. To understand the basis of this resistance, we determined co-crystal structures for two poorly neutralizing, CD4-binding site (CD4BS) antibodies, F105 and b13, in complexes with gp120. Both antibodies exhibited approach angles to gp120 similar to those of CD4 and a rare, broadly neutralizing CD4BS antibody, b12. Slight differences in recognition, however, resulted in substantial differences in F105- and b13-bound conformations relative to b12-bound gp120. Modeling and binding experiments revealed these conformations to be poorly compatible with the viral spike. This incompatibility, the consequence of slight differences in CD4BS recognition, renders HIV-1 resistant to all but the most accurately targeted antibodies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2862588/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2862588/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Lei -- Kwon, Young Do -- Zhou, Tongqing -- Wu, Xueling -- O'Dell, Sijy -- Cavacini, Lisa -- Hessell, Ann J -- Pancera, Marie -- Tang, Min -- Xu, Ling -- Yang, Zhi-Yong -- Zhang, Mei-Yun -- Arthos, James -- Burton, Dennis R -- Dimitrov, Dimiter S -- Nabel, Gary J -- Posner, Marshall R -- Sodroski, Joseph -- Wyatt, Richard -- Mascola, John R -- Kwong, Peter D -- Z99 AI999999/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2009 Nov 20;326(5956):1123-7. doi: 10.1126/science.1175868.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965434" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Neutralizing/chemistry/*immunology/metabolism ; Antigens, CD4/chemistry/*metabolism ; Binding Sites ; Binding Sites, Antibody ; Crystallography, X-Ray ; Epitopes ; HIV Antibodies/*chemistry/*immunology/metabolism ; HIV Envelope Protein gp120/*chemistry/*immunology/metabolism ; Hiv-1 ; Humans ; Hydrophobic and Hydrophilic Interactions ; *Immune Evasion ; Models, Molecular ; Molecular Sequence Data ; Peptide Fragments/chemistry/immunology/metabolism ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-03-21
    Description: The design of new enzymes for reactions not catalysed by naturally occurring biocatalysts is a challenge for protein engineering and is a critical test of our understanding of enzyme catalysis. Here we describe the computational design of eight enzymes that use two different catalytic motifs to catalyse the Kemp elimination-a model reaction for proton transfer from carbon-with measured rate enhancements of up to 10(5) and multiple turnovers. Mutational analysis confirms that catalysis depends on the computationally designed active sites, and a high-resolution crystal structure suggests that the designs have close to atomic accuracy. Application of in vitro evolution to enhance the computational designs produced a 〉200-fold increase in k(cat)/K(m) (k(cat)/K(m) of 2,600 M(-1)s(-1) and k(cat)/k(uncat) of 〉10(6)). These results demonstrate the power of combining computational protein design with directed evolution for creating new enzymes, and we anticipate the creation of a wide range of useful new catalysts in the future.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rothlisberger, Daniela -- Khersonsky, Olga -- Wollacott, Andrew M -- Jiang, Lin -- DeChancie, Jason -- Betker, Jamie -- Gallaher, Jasmine L -- Althoff, Eric A -- Zanghellini, Alexandre -- Dym, Orly -- Albeck, Shira -- Houk, Kendall N -- Tawfik, Dan S -- Baker, David -- Howard Hughes Medical Institute/ -- England -- Nature. 2008 May 8;453(7192):190-5. doi: 10.1038/nature06879. Epub 2008 Mar 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18354394" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Amino Acid Motifs ; Binding Sites/genetics ; Catalysis ; Computational Biology ; *Computer Simulation ; Crystallography, X-Ray ; Directed Molecular Evolution/*methods ; Drug Design ; Drug Evaluation, Preclinical ; Enzymes/*chemistry/genetics/*metabolism ; Kinetics ; Models, Chemical ; Models, Molecular ; Protein Engineering/*methods ; Quantum Theory ; Sensitivity and Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-11-26
    Description: Mutations in the enzyme cytosolic isocitrate dehydrogenase 1 (IDH1) are a common feature of a major subset of primary human brain cancers. These mutations occur at a single amino acid residue of the IDH1 active site, resulting in loss of the enzyme's ability to catalyse conversion of isocitrate to alpha-ketoglutarate. However, only a single copy of the gene is mutated in tumours, raising the possibility that the mutations do not result in a simple loss of function. Here we show that cancer-associated IDH1 mutations result in a new ability of the enzyme to catalyse the NADPH-dependent reduction of alpha-ketoglutarate to R(-)-2-hydroxyglutarate (2HG). Structural studies demonstrate that when arginine 132 is mutated to histidine, residues in the active site are shifted to produce structural changes consistent with reduced oxidative decarboxylation of isocitrate and acquisition of the ability to convert alpha-ketoglutarate to 2HG. Excess accumulation of 2HG has been shown to lead to an elevated risk of malignant brain tumours in patients with inborn errors of 2HG metabolism. Similarly, in human malignant gliomas harbouring IDH1 mutations, we find markedly elevated levels of 2HG. These data demonstrate that the IDH1 mutations result in production of the onco-metabolite 2HG, and indicate that the excess 2HG which accumulates in vivo contributes to the formation and malignant progression of gliomas.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818760/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818760/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dang, Lenny -- White, David W -- Gross, Stefan -- Bennett, Bryson D -- Bittinger, Mark A -- Driggers, Edward M -- Fantin, Valeria R -- Jang, Hyun Gyung -- Jin, Shengfang -- Keenan, Marie C -- Marks, Kevin M -- Prins, Robert M -- Ward, Patrick S -- Yen, Katharine E -- Liau, Linda M -- Rabinowitz, Joshua D -- Cantley, Lewis C -- Thompson, Craig B -- Vander Heiden, Matthew G -- Su, Shinsan M -- P01 CA104838/CA/NCI NIH HHS/ -- P01 CA104838-05/CA/NCI NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 CA105463/CA/NCI NIH HHS/ -- R01 CA105463-06/CA/NCI NIH HHS/ -- R21 CA128620/CA/NCI NIH HHS/ -- England -- Nature. 2009 Dec 10;462(7274):739-44. doi: 10.1038/nature08617. Epub .〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Agios Pharmaceuticals, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19935646" target="_blank"〉PubMed〈/a〉
    Keywords: Arginine/genetics ; Brain Neoplasms/*genetics/*metabolism/pathology ; Catalytic Domain ; Cell Line ; Crystallography, X-Ray ; Disease Progression ; Enzyme Assays ; Glioma/genetics/metabolism/pathology ; Glutarates/*metabolism ; Histidine/genetics/metabolism ; Humans ; Isocitrate Dehydrogenase/*genetics/*metabolism ; Ketoglutaric Acids/metabolism ; Models, Molecular ; Mutant Proteins/*genetics/*metabolism ; Mutation/genetics ; Protein Conformation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-11-27
    Description: Despite the growing number of atomic-resolution membrane protein structures, direct structural information about proteins in their native membrane environment is scarce. This problem is particularly relevant in the case of the highly charged S1-S4 voltage-sensing domains responsible for nerve impulses, where interactions with the lipid bilayer are critical for the function of voltage-activated ion channels. Here we use neutron diffraction, solid-state nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics simulations to investigate the structure and hydration of bilayer membranes containing S1-S4 voltage-sensing domains. Our results show that voltage sensors adopt transmembrane orientations and cause a modest reshaping of the surrounding lipid bilayer, and that water molecules intimately interact with the protein within the membrane. These structural findings indicate that voltage sensors have evolved to interact with the lipid membrane while keeping energetic and structural perturbations to a minimum, and that water penetrates the membrane, to hydrate charged residues and shape the transmembrane electric field.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2784928/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2784928/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Krepkiy, Dmitriy -- Mihailescu, Mihaela -- Freites, J Alfredo -- Schow, Eric V -- Worcester, David L -- Gawrisch, Klaus -- Tobias, Douglas J -- White, Stephen H -- Swartz, Kenton J -- GM74737/GM/NIGMS NIH HHS/ -- GM86685/GM/NIGMS NIH HHS/ -- P01 GM086685/GM/NIGMS NIH HHS/ -- R01 GM074637/GM/NIGMS NIH HHS/ -- R01 RR014812/RR/NCRR NIH HHS/ -- ZIA NS002945-13/Intramural NIH HHS/ -- England -- Nature. 2009 Nov 26;462(7272):473-9. doi: 10.1038/nature08542.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19940918" target="_blank"〉PubMed〈/a〉
    Keywords: Archaeal Proteins/chemistry/metabolism ; Circular Dichroism ; Lipid Bilayers/*chemistry/*metabolism ; Membrane Lipids/analysis/chemistry/metabolism ; *Membrane Potentials ; Models, Molecular ; Molecular Dynamics Simulation ; Neutron Diffraction ; Nuclear Magnetic Resonance, Biomolecular ; Potassium Channels, Voltage-Gated/*chemistry/metabolism ; Protein Structure, Tertiary ; Spectrometry, Fluorescence ; Water/*analysis/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-08-04
    Description: Polymerization of actin filaments directed by the actin-related protein (Arp)2/3 complex supports many types of cellular movements. However, questions remain regarding the relative contributions of Arp2/3 complex versus other mechanisms of actin filament nucleation to processes such as path finding by neuronal growth cones; this is because of the lack of simple methods to inhibit Arp2/3 complex reversibly in living cells. Here we describe two classes of small molecules that bind to different sites on the Arp2/3 complex and inhibit its ability to nucleate actin filaments. CK-0944636 binds between Arp2 and Arp3, where it appears to block movement of Arp2 and Arp3 into their active conformation. CK-0993548 inserts into the hydrophobic core of Arp3 and alters its conformation. Both classes of compounds inhibit formation of actin filament comet tails by Listeria and podosomes by monocytes. Two inhibitors with different mechanisms of action provide a powerful approach for studying the Arp2/3 complex in living cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2780427/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2780427/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nolen, B J -- Tomasevic, N -- Russell, A -- Pierce, D W -- Jia, Z -- McCormick, C D -- Hartman, J -- Sakowicz, R -- Pollard, T D -- F32 GM074374-02/GM/NIGMS NIH HHS/ -- GM-066311/GM/NIGMS NIH HHS/ -- GM074374-02/GM/NIGMS NIH HHS/ -- P01 GM066311/GM/NIGMS NIH HHS/ -- P01 GM066311-01A1/GM/NIGMS NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- England -- Nature. 2009 Aug 20;460(7258):1031-4. doi: 10.1038/nature08231. Epub 2009 Aug 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19648907" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/drug effects/metabolism ; Actin-Related Protein 2/antagonists & inhibitors/chemistry/metabolism ; Actin-Related Protein 2-3 Complex/*antagonists & inhibitors/chemistry/metabolism ; Actin-Related Protein 3/antagonists & inhibitors/chemistry/metabolism ; Actins/chemistry/metabolism ; Animals ; Biopolymers/chemistry/metabolism ; Cattle ; Cell Line ; Crystallography, X-Ray ; Humans ; Hydrophobic and Hydrophilic Interactions ; Indoles/classification/metabolism/pharmacology ; Listeria/physiology ; Models, Molecular ; Monocytes/immunology ; Protein Conformation/drug effects ; Schizosaccharomyces ; Thiazoles/chemistry/classification/metabolism/pharmacology ; Thiophenes/classification/metabolism/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-12-25
    Description: Sequencing of bacterial and archaeal genomes has revolutionized our understanding of the many roles played by microorganisms. There are now nearly 1,000 completed bacterial and archaeal genomes available, most of which were chosen for sequencing on the basis of their physiology. As a result, the perspective provided by the currently available genomes is limited by a highly biased phylogenetic distribution. To explore the value added by choosing microbial genomes for sequencing on the basis of their evolutionary relationships, we have sequenced and analysed the genomes of 56 culturable species of Bacteria and Archaea selected to maximize phylogenetic coverage. Analysis of these genomes demonstrated pronounced benefits (compared to an equivalent set of genomes randomly selected from the existing database) in diverse areas including the reconstruction of phylogenetic history, the discovery of new protein families and biological properties, and the prediction of functions for known genes from other organisms. Our results strongly support the need for systematic 'phylogenomic' efforts to compile a phylogeny-driven 'Genomic Encyclopedia of Bacteria and Archaea' in order to derive maximum knowledge from existing microbial genome data as well as from genome sequences to come.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073058/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073058/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Dongying -- Hugenholtz, Philip -- Mavromatis, Konstantinos -- Pukall, Rudiger -- Dalin, Eileen -- Ivanova, Natalia N -- Kunin, Victor -- Goodwin, Lynne -- Wu, Martin -- Tindall, Brian J -- Hooper, Sean D -- Pati, Amrita -- Lykidis, Athanasios -- Spring, Stefan -- Anderson, Iain J -- D'haeseleer, Patrik -- Zemla, Adam -- Singer, Mitchell -- Lapidus, Alla -- Nolan, Matt -- Copeland, Alex -- Han, Cliff -- Chen, Feng -- Cheng, Jan-Fang -- Lucas, Susan -- Kerfeld, Cheryl -- Lang, Elke -- Gronow, Sabine -- Chain, Patrick -- Bruce, David -- Rubin, Edward M -- Kyrpides, Nikos C -- Klenk, Hans-Peter -- Eisen, Jonathan A -- R01 GM054592-09/GM/NIGMS NIH HHS/ -- R01 GM067012-04/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Dec 24;462(7276):1056-60. doi: 10.1038/nature08656.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉DOE Joint Genome Institute, Walnut Creek, California 94598, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20033048" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/chemistry ; Amino Acid Sequence ; Archaea/*classification/*genetics ; Bacteria/*classification/*genetics ; Bacterial Proteins/chemistry ; Biodiversity ; Databases, Genetic ; Genes, rRNA/genetics ; Genome, Archaeal/*genetics ; Genome, Bacterial/*genetics ; Models, Molecular ; Molecular Sequence Data ; *Phylogeny ; Protein Structure, Tertiary ; Sequence Alignment
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2008-03-08
    Description: The creation of enzymes capable of catalyzing any desired chemical reaction is a grand challenge for computational protein design. Using new algorithms that rely on hashing techniques to construct active sites for multistep reactions, we designed retro-aldolases that use four different catalytic motifs to catalyze the breaking of a carbon-carbon bond in a nonnatural substrate. Of the 72 designs that were experimentally characterized, 32, spanning a range of protein folds, had detectable retro-aldolase activity. Designs that used an explicit water molecule to mediate proton shuffling were significantly more successful, with rate accelerations of up to four orders of magnitude and multiple turnovers, than those involving charged side-chain networks. The atomic accuracy of the design process was confirmed by the x-ray crystal structure of active designs embedded in two protein scaffolds, both of which were nearly superimposable on the design model.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3431203/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3431203/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jiang, Lin -- Althoff, Eric A -- Clemente, Fernando R -- Doyle, Lindsey -- Rothlisberger, Daniela -- Zanghellini, Alexandre -- Gallaher, Jasmine L -- Betker, Jamie L -- Tanaka, Fujie -- Barbas, Carlos F 3rd -- Hilvert, Donald -- Houk, Kendall N -- Stoddard, Barry L -- Baker, David -- R01 CA097328/CA/NCI NIH HHS/ -- R01 GM049857/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Mar 7;319(5868):1387-91. doi: 10.1126/science.1152692.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18323453" target="_blank"〉PubMed〈/a〉
    Keywords: Aldehyde-Lyases/*chemistry/metabolism ; *Algorithms ; Binding Sites ; Catalysis ; Catalytic Domain ; Computer Simulation ; Crystallography, X-Ray ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Kinetics ; Models, Molecular ; Protein Conformation ; Protein Engineering
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-09-06
    Description: There are currently few therapeutic options for patients with pancreatic cancer, and new insights into the pathogenesis of this lethal disease are urgently needed. Toward this end, we performed a comprehensive genetic analysis of 24 pancreatic cancers. We first determined the sequences of 23,219 transcripts, representing 20,661 protein-coding genes, in these samples. Then, we searched for homozygous deletions and amplifications in the tumor DNA by using microarrays containing probes for approximately 10(6) single-nucleotide polymorphisms. We found that pancreatic cancers contain an average of 63 genetic alterations, the majority of which are point mutations. These alterations defined a core set of 12 cellular signaling pathways and processes that were each genetically altered in 67 to 100% of the tumors. Analysis of these tumors' transcriptomes with next-generation sequencing-by-synthesis technologies provided independent evidence for the importance of these pathways and processes. Our data indicate that genetically altered core pathways and regulatory processes only become evident once the coding regions of the genome are analyzed in depth. Dysregulation of these core pathways and processes through mutation can explain the major features of pancreatic tumorigenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848990/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848990/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jones, Sian -- Zhang, Xiaosong -- Parsons, D Williams -- Lin, Jimmy Cheng-Ho -- Leary, Rebecca J -- Angenendt, Philipp -- Mankoo, Parminder -- Carter, Hannah -- Kamiyama, Hirohiko -- Jimeno, Antonio -- Hong, Seung-Mo -- Fu, Baojin -- Lin, Ming-Tseh -- Calhoun, Eric S -- Kamiyama, Mihoko -- Walter, Kimberly -- Nikolskaya, Tatiana -- Nikolsky, Yuri -- Hartigan, James -- Smith, Douglas R -- Hidalgo, Manuel -- Leach, Steven D -- Klein, Alison P -- Jaffee, Elizabeth M -- Goggins, Michael -- Maitra, Anirban -- Iacobuzio-Donahue, Christine -- Eshleman, James R -- Kern, Scott E -- Hruban, Ralph H -- Karchin, Rachel -- Papadopoulos, Nickolas -- Parmigiani, Giovanni -- Vogelstein, Bert -- Velculescu, Victor E -- Kinzler, Kenneth W -- CA121113/CA/NCI NIH HHS/ -- CA43460/CA/NCI NIH HHS/ -- CA57345/CA/NCI NIH HHS/ -- CA62924/CA/NCI NIH HHS/ -- P50 CA062924/CA/NCI NIH HHS/ -- P50 CA062924-130011/CA/NCI NIH HHS/ -- P50 CA062924-140011/CA/NCI NIH HHS/ -- P50 CA062924-160017/CA/NCI NIH HHS/ -- R01 CA121113/CA/NCI NIH HHS/ -- R01 CA121113-04/CA/NCI NIH HHS/ -- R37 CA043460/CA/NCI NIH HHS/ -- R37 CA043460-27/CA/NCI NIH HHS/ -- R37 CA057345/CA/NCI NIH HHS/ -- R37 CA057345-17/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Sep 26;321(5897):1801-6. doi: 10.1126/science.1164368. Epub 2008 Sep 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sol Goldman Pancreatic Cancer Research Center, Ludwig Center and Howard Hughes Medical Institute at the Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18772397" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/etiology/*genetics/*metabolism ; Algorithms ; Carcinoma, Pancreatic Ductal/etiology/genetics/metabolism ; Computational Biology ; Gene Amplification ; Gene Expression Profiling ; Genome, Human ; Humans ; Models, Molecular ; *Mutation ; Mutation, Missense ; Oligonucleotide Array Sequence Analysis ; Pancreatic Neoplasms/etiology/*genetics/*metabolism ; Point Mutation ; Polymorphism, Single Nucleotide ; Sequence Deletion ; Signal Transduction/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...