ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1998-06-20
    Description: Stimulation of T lymphocytes results in a rapid increase in intracellular calcium concentration ([Ca2+]i) that parallels the activation of Ca2+-calmodulin-dependent protein kinase IV (CaMKIV), a nuclear enzyme that can phosphorylate and activate the cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB). However, inactivation of CaMKIV occurs despite the sustained increase in [Ca2+]i that is required for T cell activation. A stable and stoichiometric complex of CaMKIV with protein serine-threonine phosphatase 2A (PP2A) was identified in which PP2A dephosphorylates CaMKIV and functions as a negative regulator of CaMKIV signaling. In Jurkat T cells, inhibition of PP2A activity by small t antigen enhanced activation of CREB-mediated transcription by CaMKIV. These findings reveal an intracellular signaling mechanism whereby a protein serine-threonine kinase (CaMKIV) is regulated by a tightly associated protein serine-threonine phosphatase (PP2A).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Westphal, R S -- Anderson, K A -- Means, A R -- Wadzinski, B E -- GM33976/GM/NIGMS NIH HHS/ -- GM51366/GM/NIGMS NIH HHS/ -- HD07503/HD/NICHD NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1998 May 22;280(5367):1258-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9596578" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Polyomavirus Transforming/metabolism ; Brain/enzymology ; Calcium/metabolism ; Calcium-Calmodulin-Dependent Protein Kinase Type 4 ; Calcium-Calmodulin-Dependent Protein Kinases/genetics/isolation & ; purification/*metabolism ; Calmodulin/metabolism ; Coenzymes/metabolism ; Cyclic AMP Response Element-Binding Protein/metabolism ; Enzyme Activation ; Humans ; Jurkat Cells ; Lymphocyte Activation ; Mutation ; Phosphoprotein Phosphatases/isolation & purification/*metabolism ; Phosphorylation ; Protein Phosphatase 2 ; Rats ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; T-Lymphocytes/*enzymology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1992-10-02
    Description: The smooth muscle myosin light chain kinase (smMLCK) catalytic core was modeled by using the crystallographic coordinates of the cyclic AMP-dependent protein kinase catalytic subunit (cAPK) and a bound pseudosubstrate inhibitor peptide, PKI(5-24). Despite only 30% identity in amino acid sequence, the MLCK sequence can be readily accommodated in this structure. With the exception of the short B-helix, all major elements of secondary structure in the core are very likely conserved. The active site of the modeled MLCK complements the known requirements for peptide substrate recognition. MLCK contains a pseudosubstrate sequence that overlaps the calmodulin binding domain and has been proposed to act as an intrasteric inhibitor and occupy the substrate binding site in the absence of Ca(2+)-calmodulin. The pseudosubstrate sequence can be modeled easily into the entire backbone of PKI(5-24). The results demonstrate that the intrasteric model for regulation of MLCK by intramolecular competitive inhibition is structurally plausible.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Knighton, D R -- Pearson, R B -- Sowadski, J M -- Means, A R -- Ten Eyck, L F -- Taylor, S S -- Kemp, B E -- T32CA09523/CA/NCI NIH HHS/ -- T32DK07233/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1992 Oct 2;258(5079):130-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California San Diego, La Jolla 92093-0654.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1439761" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Chromosome Mapping ; Crystallography ; *Gene Expression Regulation, Enzymologic ; Models, Molecular ; Molecular Sequence Data ; Molecular Structure ; Myosin-Light-Chain Kinase/*chemistry ; Oligopeptides/genetics/metabolism ; Peptide Fragments ; Peptides/genetics/metabolism ; Protein Binding/physiology ; Protein Kinases/chemistry ; Sequence Alignment ; Sequence Homology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1992-08-28
    Description: The crystal structure of calcium-bound calmodulin (Ca(2+)-CaM) bound to a peptide analog of the CaM-binding region of chicken smooth muscle myosin light chain kinase has been determined and refined to a resolution of 2.4 angstroms (A). The structure is compact and has the shape of an ellipsoid (axial ratio approximately 2:1). The bound CaM forms a tunnel diagonal to its long axis that engulfs the helical peptide, with the hydrophobic regions of CaM melded into a single area that closely covers the hydrophobic side of the peptide. There is a remarkably high pseudo-twofold symmetry between the closely associated domains. The central helix of the native CaM is unwound and expanded into a bend between residues 73 and 77. About 185 contacts (less than 4 A) are formed between CaM and the peptide, with van der Waals contacts comprising approximately 80% of this total.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meador, W E -- Means, A R -- Quiocho, F A -- New York, N.Y. -- Science. 1992 Aug 28;257(5074):1251-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1519061" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Calmodulin/*chemistry ; Crystallography ; Models, Molecular ; Molecular Sequence Data ; Myosin-Light-Chain Kinase/*metabolism ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-02-03
    Description: Mitochondrial DNA (mtDNA) is normally present at thousands of copies per cell and is packaged into several hundred higher-order structures termed nucleoids. The abundant mtDNA-binding protein TFAM (transcription factor A, mitochondrial) regulates nucleoid architecture, abundance and segregation. Complete mtDNA depletion profoundly impairs oxidative phosphorylation, triggering calcium-dependent stress signalling and adaptive metabolic responses. However, the cellular responses to mtDNA instability, a physiologically relevant stress observed in many human diseases and ageing, remain poorly defined. Here we show that moderate mtDNA stress elicited by TFAM deficiency engages cytosolic antiviral signalling to enhance the expression of a subset of interferon-stimulated genes. Mechanistically, we find that aberrant mtDNA packaging promotes escape of mtDNA into the cytosol, where it engages the DNA sensor cGAS (also known as MB21D1) and promotes STING (also known as TMEM173)-IRF3-dependent signalling to elevate interferon-stimulated gene expression, potentiate type I interferon responses and confer broad viral resistance. Furthermore, we demonstrate that herpesviruses induce mtDNA stress, which enhances antiviral signalling and type I interferon responses during infection. Our results further demonstrate that mitochondria are central participants in innate immunity, identify mtDNA stress as a cell-intrinsic trigger of antiviral signalling and suggest that cellular monitoring of mtDNA homeostasis cooperates with canonical virus sensing mechanisms to fully engage antiviral innate immunity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409480/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409480/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉West, A Phillip -- Khoury-Hanold, William -- Staron, Matthew -- Tal, Michal C -- Pineda, Cristiana M -- Lang, Sabine M -- Bestwick, Megan -- Duguay, Brett A -- Raimundo, Nuno -- MacDuff, Donna A -- Kaech, Susan M -- Smiley, James R -- Means, Robert E -- Iwasaki, Akiko -- Shadel, Gerald S -- F31 AG039163/AG/NIA NIH HHS/ -- F32 DK091042/DK/NIDDK NIH HHS/ -- MOP37995/Canadian Institutes of Health Research/Canada -- P01 ES011163/ES/NIEHS NIH HHS/ -- R01 AG047632/AG/NIA NIH HHS/ -- R01 AI054359/AI/NIAID NIH HHS/ -- R01 AI081884/AI/NIAID NIH HHS/ -- T32 AI055403/AI/NIAID NIH HHS/ -- UL1 TR000142/TR/NCATS NIH HHS/ -- England -- Nature. 2015 Apr 23;520(7548):553-7. doi: 10.1038/nature14156. Epub 2015 Feb 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, USA. ; Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut 06520, USA. ; Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada. ; Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA. ; 1] Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut 06520, USA [2] Howard Hughes Medical Institute, Chevy Chase, Maryland 20815-6789, USA. ; 1] Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, USA [2] Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25642965" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; DNA, Mitochondrial/*metabolism ; DNA-Binding Proteins/deficiency/genetics/metabolism ; Female ; Gene Expression Regulation/genetics/immunology ; Herpesvirus 1, Human/*immunology ; High Mobility Group Proteins/deficiency/genetics/metabolism ; Humans ; Immunity, Innate/*immunology ; Interferon Regulatory Factor-3/metabolism ; Interferon Type I/immunology ; Membrane Proteins/metabolism ; Mice ; Nucleotidyltransferases/metabolism ; *Stress, Physiological
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1993-12-10
    Description: Calmodulin is the primary calcium-dependent signal transducer and regulator of a wide variety of essential cellular functions. The structure of calcium-calmodulin bound to the peptide corresponding to the calmodulin-binding domain of brain calmodulin-dependent protein kinase II alpha was determined to 2 angstrom resolution. A comparison to two other calcium-calmodulin structures reveals how the central helix unwinds in order to position the two domains optimally in the recognition of different target enzymes and clarifies the role of calcium in maintaining recognition-competent domain structures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meador, W E -- Means, A R -- Quiocho, F A -- New York, N.Y. -- Science. 1993 Dec 10;262(5140):1718-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8259515" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Calcium/*metabolism ; Calcium-Calmodulin-Dependent Protein Kinases/chemistry/*metabolism ; Calmodulin/*chemistry/metabolism ; Computer Graphics ; Crystallography, X-Ray ; Models, Molecular ; Molecular Sequence Data ; Peptides/chemistry/*metabolism ; Protein Structure, Secondary ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-05-30
    Description: Adsorber configuration, and oil contamination effects on Brayton cycle turbomachinery rolling element bearing system
    Keywords: MACHINE ELEMENTS AND PROCESSES
    Type: NASA-CR-72072 , PWA-2897
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-05-29
    Description: Rolling-element bearing lubrication system and turboalternator and turbine compressor rotor for Brayton cycle space power source
    Keywords: MACHINE ELEMENTS AND PROCESSES
    Type: NASA-CR-54915 , PWA-2780
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-05-29
    Description: Brayton cycle turbomachinery rolling element bearing system
    Keywords: MACHINE ELEMENTS AND PROCESSES
    Type: NASA-CR-54785 , PWA-2713
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-05-29
    Description: Potential of oil lubricated rolling-element bearing system for Brayton cycle space power turbomachinery
    Keywords: MACHINE ELEMENTS AND PROCESSES
    Type: NASA-CR-54991 , PWA-2845
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-27
    Description: Performance evaluation of oil lubrication system for antifriction bearing rotor system of Brayton cycle turbomachinery
    Keywords: MACHINE ELEMENTS AND PROCESSES
    Type: NASA-CR-1229
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...