ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-08-01
    Description: After a long history of overexploitation, increasing efforts to restore marine ecosystems and rebuild fisheries are under way. Here, we analyze current trends from a fisheries and conservation perspective. In 5 of 10 well-studied ecosystems, the average exploitation rate has recently declined and is now at or below the rate predicted to achieve maximum sustainable yield for seven systems. Yet 63% of assessed fish stocks worldwide still require rebuilding, and even lower exploitation rates are needed to reverse the collapse of vulnerable species. Combined fisheries and conservation objectives can be achieved by merging diverse management actions, including catch restrictions, gear modification, and closed areas, depending on local context. Impacts of international fleets and the lack of alternatives to fishing complicate prospects for rebuilding fisheries in many poorer regions, highlighting the need for a global perspective on rebuilding marine resources.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Worm, Boris -- Hilborn, Ray -- Baum, Julia K -- Branch, Trevor A -- Collie, Jeremy S -- Costello, Christopher -- Fogarty, Michael J -- Fulton, Elizabeth A -- Hutchings, Jeffrey A -- Jennings, Simon -- Jensen, Olaf P -- Lotze, Heike K -- Mace, Pamela M -- McClanahan, Tim R -- Minto, Coilin -- Palumbi, Stephen R -- Parma, Ana M -- Ricard, Daniel -- Rosenberg, Andrew A -- Watson, Reg -- Zeller, Dirk -- New York, N.Y. -- Science. 2009 Jul 31;325(5940):578-85. doi: 10.1126/science.1173146.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biology Department, Dalhousie University, Halifax, NS B3H 4J1, Canada. bworm@dal.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19644114" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biodiversity ; Biomass ; *Conservation of Natural Resources ; *Ecosystem ; *Fisheries/methods ; *Fishes/anatomy & histology ; Internationality ; Marine Biology ; Models, Biological ; Oceans and Seas ; Population Dynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-10-28
    Description: Quantitative scenarios are coming of age as a tool for evaluating the impact of future socioeconomic development pathways on biodiversity and ecosystem services. We analyze global terrestrial, freshwater, and marine biodiversity scenarios using a range of measures including extinctions, changes in species abundance, habitat loss, and distribution shifts, as well as comparing model projections to observations. Scenarios consistently indicate that biodiversity will continue to decline over the 21st century. However, the range of projected changes is much broader than most studies suggest, partly because there are major opportunities to intervene through better policies, but also because of large uncertainties in projections.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pereira, Henrique M -- Leadley, Paul W -- Proenca, Vania -- Alkemade, Rob -- Scharlemann, Jorn P W -- Fernandez-Manjarres, Juan F -- Araujo, Miguel B -- Balvanera, Patricia -- Biggs, Reinette -- Cheung, William W L -- Chini, Louise -- Cooper, H David -- Gilman, Eric L -- Guenette, Sylvie -- Hurtt, George C -- Huntington, Henry P -- Mace, Georgina M -- Oberdorff, Thierry -- Revenga, Carmen -- Rodrigues, Patricia -- Scholes, Robert J -- Sumaila, Ussif Rashid -- Walpole, Matt -- New York, N.Y. -- Science. 2010 Dec 10;330(6010):1496-501. doi: 10.1126/science.1196624. Epub 2010 Oct 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centro de Biologia Ambiental, Faculdade de Ciencias da Universidade de Lisboa, 1749-016 Lisboa, Portugal. hpereira@fc.ul.pt〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20978282" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aquatic Organisms ; *Biodiversity ; Conservation of Natural Resources ; *Ecosystem ; Extinction, Biological ; Forecasting ; Models, Biological ; Plants ; Policy ; Population Dynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-07-23
    Description: Many large animal species have a high risk of extinction. This is usually thought to result simply from the way that species traits associated with vulnerability, such as low reproductive rates, scale with body size. In a broad-scale analysis of extinction risk in mammals, we find two additional patterns in the size selectivity of extinction risk. First, impacts of both intrinsic and environmental factors increase sharply above a threshold body mass around 3 kilograms. Second, whereas extinction risk in smaller species is driven by environmental factors, in larger species it is driven by a combination of environmental factors and intrinsic traits. Thus, the disadvantages of large size are greater than generally recognized, and future loss of large mammal biodiversity could be far more rapid than expected.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cardillo, Marcel -- Mace, Georgina M -- Jones, Kate E -- Bielby, Jon -- Bininda-Emonds, Olaf R P -- Sechrest, Wes -- Orme, C David L -- Purvis, Andy -- New York, N.Y. -- Science. 2005 Aug 19;309(5738):1239-41. Epub 2005 Jul 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, Imperial College London, Silwood Park, Ascot SL5 7PY, UK. m.cardillo@imperial.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16037416" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biodiversity ; Biological Evolution ; *Body Size ; Body Weight ; Conservation of Natural Resources ; *Ecosystem ; *Environment ; Female ; Homing Behavior ; Humans ; *Mammals/physiology ; Models, Biological ; Models, Statistical ; Population Density ; Population Dynamics ; Pregnancy ; Pregnancy, Animal ; Regression Analysis ; Risk ; Weaning
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2005-01-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Balmford, Andrew -- Bennun, Leon -- Brink, Ben Ten -- Cooper, David -- Cote, Isabelle M -- Crane, Peter -- Dobson, Andrew -- Dudley, Nigel -- Dutton, Ian -- Green, Rhys E -- Gregory, Richard D -- Harrison, Jeremy -- Kennedy, Elizabeth T -- Kremen, Claire -- Leader-Williams, Nigel -- Lovejoy, Thomas E -- Mace, Georgina -- May, Robert -- Mayaux, Phillipe -- Morling, Paul -- Phillips, Joanna -- Redford, Kent -- Ricketts, Taylor H -- Rodriguez, Jon Paul -- Sanjayan, M -- Schei, Peter J -- van Jaarsveld, Albert S -- Walther, Bruno A -- New York, N.Y. -- Science. 2005 Jan 14;307(5707):212-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cambridge University and University of Cape Town.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15653489" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; *Conservation of Natural Resources ; *Ecology ; Ecosystem ; Humans ; Interdisciplinary Communication ; International Cooperation ; Models, Biological ; Models, Theoretical ; Public Policy
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-04-04
    Description: Human activities, especially conversion and degradation of habitats, are causing global biodiversity declines. How local ecological assemblages are responding is less clear--a concern given their importance for many ecosystem functions and services. We analysed a terrestrial assemblage database of unprecedented geographic and taxonomic coverage to quantify local biodiversity responses to land use and related changes. Here we show that in the worst-affected habitats, these pressures reduce within-sample species richness by an average of 76.5%, total abundance by 39.5% and rarefaction-based richness by 40.3%. We estimate that, globally, these pressures have already slightly reduced average within-sample richness (by 13.6%), total abundance (10.7%) and rarefaction-based richness (8.1%), with changes showing marked spatial variation. Rapid further losses are predicted under a business-as-usual land-use scenario; within-sample richness is projected to fall by a further 3.4% globally by 2100, with losses concentrated in biodiverse but economically poor countries. Strong mitigation can deliver much more positive biodiversity changes (up to a 1.9% average increase) that are less strongly related to countries' socioeconomic status.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Newbold, Tim -- Hudson, Lawrence N -- Hill, Samantha L L -- Contu, Sara -- Lysenko, Igor -- Senior, Rebecca A -- Borger, Luca -- Bennett, Dominic J -- Choimes, Argyrios -- Collen, Ben -- Day, Julie -- De Palma, Adriana -- Diaz, Sandra -- Echeverria-Londono, Susy -- Edgar, Melanie J -- Feldman, Anat -- Garon, Morgan -- Harrison, Michelle L K -- Alhusseini, Tamera -- Ingram, Daniel J -- Itescu, Yuval -- Kattge, Jens -- Kemp, Victoria -- Kirkpatrick, Lucinda -- Kleyer, Michael -- Correia, David Laginha Pinto -- Martin, Callum D -- Meiri, Shai -- Novosolov, Maria -- Pan, Yuan -- Phillips, Helen R P -- Purves, Drew W -- Robinson, Alexandra -- Simpson, Jake -- Tuck, Sean L -- Weiher, Evan -- White, Hannah J -- Ewers, Robert M -- Mace, Georgina M -- Scharlemann, Jorn P W -- Purvis, Andy -- BB/F017324/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2015 Apr 2;520(7545):45-50. doi: 10.1038/nature14324.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] United Nations Environment Programme World Conservation Monitoring Centre, 219 Huntingdon Road, Cambridge CB3 0DL, UK. [2] Computational Science Laboratory, Microsoft Research Cambridge, 21 Station Road, Cambridge CB1 2FB, UK. ; Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK. ; 1] United Nations Environment Programme World Conservation Monitoring Centre, 219 Huntingdon Road, Cambridge CB3 0DL, UK. [2] Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK. ; Department of Life Sciences, Imperial College London, Silwood Park, London SL5 7PY, UK. ; United Nations Environment Programme World Conservation Monitoring Centre, 219 Huntingdon Road, Cambridge CB3 0DL, UK. ; Department of Biosciences, College of Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK. ; 1] Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK. [2] Department of Life Sciences, Imperial College London, Silwood Park, London SL5 7PY, UK. ; Department of Genetics, Evolution and Environment, Centre for Biodiversity and Environment Research, University College London, Gower Street, London WC1E 6BT, UK. ; Instituto Multidisciplinario de Biologia Vegetal (CONICET-UNC) and FCEFyN, Universidad Nacional de Cordoba, Casilla de Correo 495, 5000 Cordoba, Argentina. ; Deptartment of Zoology, Faculty of Life Sciences, Tel-Aviv University, 6997801 Tel Aviv, Israel. ; 1] Max Planck Institute for Biogeochemistry, Hans Knoll Strasse 10, 07743 Jena, Germany. [2] German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany. ; Landscape Ecology Group, Institute of Biology and Environmental Sciences, University of Oldenburg, D-26111 Oldenburg, Germany. ; Computational Science Laboratory, Microsoft Research Cambridge, 21 Station Road, Cambridge CB1 2FB, UK. ; Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK. ; Biology Department, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin 54701, USA. ; 1] United Nations Environment Programme World Conservation Monitoring Centre, 219 Huntingdon Road, Cambridge CB3 0DL, UK. [2] School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25832402" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; Conservation of Natural Resources/trends ; Ecology/trends ; History, 16th Century ; History, 17th Century ; History, 18th Century ; History, 19th Century ; History, 20th Century ; History, 21st Century ; *Human Activities ; Models, Biological ; Population Dynamics ; Species Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: Fail-safe, hybrid, flow control (HFC) is a promising technology for meeting high-speed cruise efficiency, low-noise signature, and reduced fuel-burn goals for future, Hybrid-Wing-Body (HWB) aircraft with embedded engines. This report details the development of HFC technology that enables improved inlet performance in HWB vehicles with highly integrated inlets and embedded engines without adversely affecting vehicle performance. In addition, new test techniques for evaluating Boundary-Layer-Ingesting (BLI)-inlet flow-control technologies developed and demonstrated through this program are documented, including the ability to generate a BLI-like inlet-entrance flow in a direct-connect, wind-tunnel facility, as well as, the use of D-optimal, statistically designed experiments to optimize test efficiency and enable interpretation of results. Validated improvements in numerical analysis tools and methods accomplished through this program are also documented, including Reynolds-Averaged Navier-Stokes CFD simulations of steady-state flow physics for baseline, BLI-inlet diffuser flow, as well as, that created by flow-control devices. Finally, numerical methods were employed in a ground-breaking attempt to directly simulate dynamic distortion. The advances in inlet technologies and prediction tools will help to meet and exceed "N+2" project goals for future HWB aircraft.
    Keywords: Aerodynamics
    Type: NASA/CR-2011-217237
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The reduction of the aerodynamic load that acts on a generic rotorcraft fuselage by the application of active flow control was investigated in a wind tunnel test conducted on an approximately 1/3-scale powered rotorcraft model simulating forward flight. The aerodynamic mechanisms that make these reductions, in both the drag and the download, possible were examined in detail through the use of the measured surface pressure distribution on the fuselage, velocity field measurements made in the wake directly behind the ramp of the fuselage and computational simulations. The fuselage tested was the ROBIN-mod7, which was equipped with a series of eight slots located on the ramp section through which flow control excitation was introduced. These slots were arranged in a U-shaped pattern located slightly downstream of the baseline separation line and parallel to it. The flow control excitation took the form of either synthetic jets, also known as zero-net-mass-flux blowing, and steady blowing. The same set of slots were used for both types of excitation. The differences between the two excitation types and between flow control excitation from different combinations of slots were examined. The flow control is shown to alter the size of the wake and its trajectory relative to the ramp and the tailboom and it is these changes to the wake that result in a reduction in the aerodynamic load.
    Keywords: Aerodynamics
    Type: NF1676L-22024 , AHS International Technical Meeting on Aeromechanics Design for Vertical Lift; Jan 20, 2016 - Jan 22, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Time accurate numerical simulations were performed using the Reynolds-averaged Navier-Stokes (RANS) flow solver OVERFLOW for a heavy lift, slowed-rotor, compound helicopter configuration, tested at the NASA Langley 14- by 22-Foot Subsonic Tunnel. The primary purpose of these simulations is to provide support for the development of a large field of view Particle Imaging Velocimetry (PIV) flow measurement technique supported by the Subsonic Rotary Wing (SRW) project under the NASA Fundamental Aeronautics program. These simulations provide a better understanding of the rotor and body wake flows and helped to define PIV measurement locations as well as requirements for validation of flow solver codes. The large field PIV system can measure the three-dimensional velocity flow field in a 0.914m by 1.83m plane. PIV measurements were performed upstream and downstream of the vertical tail section and are compared to simulation results. The simulations are also used to better understand the tunnel wall and body/rotor support effects by comparing simulations with and without tunnel floor/ceiling walls and supports. Comparisons are also made to the experimental force and moment data for the body and rotor.
    Keywords: Aerodynamics
    Type: LF99-7826 , AHS International 65th Forum and Technology Display; May 27, 2009 - May 29, 2009; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: A Large Field-of-View Particle Image Velocimetry (LFPIV) system has been developed for rotor wake diagnostics in the 14-by 22-Foot Subsonic Tunnel. The system has been used to measure three components of velocity in a plane as large as 1.524 meters by 0.914 meters in both forward flight and hover tests. Overall, the system performance has exceeded design expectations in terms of accuracy and efficiency. Measurements synchronized with the rotor position during forward flight and hover tests have shown that the system is able to capture the complex interaction of the body and rotor wakes as well as basic details of the blade tip vortex at several wake ages. Measurements obtained with traditional techniques such as multi-hole pressure probes, Laser Doppler Velocimetry (LDV), and 2D Particle Image Velocimetry (PIV) show good agreement with LFPIV measurements.
    Keywords: Aerodynamics
    Type: LF99-7824 , AHS International 65th Forum and Technology Display; May 27, 2009 - May 29, 2009; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: Fail-safe inlet flow control may enable high-speed cruise efficiency, low noise signature, and reduced fuel-burn goals for hybrid wing-body aircraft. The objectives of this program are to develop flow control and prediction methodologies for boundary-layer ingesting (BLI) inlets used in these aircraft. This report covers the second of a three year program. The approach integrates experiments and numerical simulations. Both passive and active flow-control devices were tested in a small-scale wind tunnel. Hybrid actuation approaches, combining a passive microvane and active synthetic jet, were tested in various geometric arrangements. Detailed flow measurements were taken to provide insight into the flow physics. Results of the numerical simulations were correlated against experimental data. The sensitivity of results to grid resolution and turbulence models was examined. Aerodynamic benefits from microvanes and microramps were assessed when installed in an offset BLI inlet. Benefits were quantified in terms of recovery and distortion changes. Microvanes were more effective than microramps at improving recovery and distortion.
    Keywords: Aerodynamics
    Type: NASA/CR-2010-216779 , E-17405
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...