ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-01-21
    Description: Appropriate responses to an imminent threat brace us for adversities. The ability to sense and predict threatening or stressful events is essential for such adaptive behaviour. In the mammalian brain, one putative stress sensor is the paraventricular nucleus of the thalamus (PVT), an area that is readily activated by both physical and psychological stressors. However, the role of the PVT in the establishment of adaptive behavioural responses remains unclear. Here we show in mice that the PVT regulates fear processing in the lateral division of the central amygdala (CeL), a structure that orchestrates fear learning and expression. Selective inactivation of CeL-projecting PVT neurons prevented fear conditioning, an effect that can be accounted for by an impairment in fear-conditioning-induced synaptic potentiation onto somatostatin-expressing (SOM(+)) CeL neurons, which has previously been shown to store fear memory. Consistently, we found that PVT neurons preferentially innervate SOM(+) neurons in the CeL, and stimulation of PVT afferents facilitated SOM(+) neuron activity and promoted intra-CeL inhibition, two processes that are critical for fear learning and expression. Notably, PVT modulation of SOM(+) CeL neurons was mediated by activation of the brain-derived neurotrophic factor (BDNF) receptor tropomysin-related kinase B (TrkB). As a result, selective deletion of either Bdnf in the PVT or Trkb in SOM(+) CeL neurons impaired fear conditioning, while infusion of BDNF into the CeL enhanced fear learning and elicited unconditioned fear responses. Our results demonstrate that the PVT-CeL pathway constitutes a novel circuit essential for both the establishment of fear memory and the expression of fear responses, and uncover mechanisms linking stress detection in PVT with the emergence of adaptive behaviour.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376633/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376633/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Penzo, Mario A -- Robert, Vincent -- Tucciarone, Jason -- De Bundel, Dimitri -- Wang, Minghui -- Van Aelst, Linda -- Darvas, Martin -- Parada, Luis F -- Palmiter, Richard D -- He, Miao -- Huang, Z Josh -- Li, Bo -- R01 MH082808/MH/NIMH NIH HHS/ -- R01 MH094705/MH/NIMH NIH HHS/ -- R01 MH101214/MH/NIMH NIH HHS/ -- R01 NS082266/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Mar 26;519(7544):455-9. doi: 10.1038/nature13978. Epub 2015 Jan 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA. ; 1] Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA [2] Ecole Normale Superieure de Cachan, 94230 Cachan, France. ; 1] Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA [2] Medical Scientist Training Program &Program in Neuroscience, Stony Brook University, Stony Brook, New York 11790, USA. ; CNRS, UMR-5203, INSERM U661, Institut de Genomique Fonctionnelle, 34090 Montpellier, France. ; Department of Pathology, University of Washington, Seattle, Washington 98104, USA. ; Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; Howard Hughes Medical Institute; Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA. ; Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25600269" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain-Derived Neurotrophic Factor/metabolism ; Central Amygdaloid Nucleus/cytology/*physiology ; Conditioning (Psychology)/physiology ; Fear/*physiology/psychology ; Female ; Male ; Memory/physiology ; Mice ; Neural Pathways/cytology/*physiology ; Neuronal Plasticity ; Neurons/metabolism ; Receptor, trkB/metabolism ; Somatostatin/metabolism ; Thalamus/cytology/*physiology ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-04-24
    Description: Although feast and famine cycles illustrate that remodelling of adipose tissue in response to fluctuations in nutrient availability is essential for maintaining metabolic homeostasis, the underlying mechanisms remain poorly understood. Here we identify fibroblast growth factor 1 (FGF1) as a critical transducer in this process in mice, and link its regulation to the nuclear receptor PPARgamma (peroxisome proliferator activated receptor gamma), which is the adipocyte master regulator and the target of the thiazolidinedione class of insulin sensitizing drugs. FGF1 is the prototype of the 22-member FGF family of proteins and has been implicated in a range of physiological processes, including development, wound healing and cardiovascular changes. Surprisingly, FGF1 knockout mice display no significant phenotype under standard laboratory conditions. We show that FGF1 is highly induced in adipose tissue in response to a high-fat diet and that mice lacking FGF1 develop an aggressive diabetic phenotype coupled to aberrant adipose expansion when challenged with a high-fat diet. Further analysis of adipose depots in FGF1-deficient mice revealed multiple histopathologies in the vasculature network, an accentuated inflammatory response, aberrant adipocyte size distribution and ectopic expression of pancreatic lipases. On withdrawal of the high-fat diet, this inflamed adipose tissue fails to properly resolve, resulting in extensive fat necrosis. In terms of mechanisms, we show that adipose induction of FGF1 in the fed state is regulated by PPARgamma acting through an evolutionarily conserved promoter proximal PPAR response element within the FGF1 gene. The discovery of a phenotype for the FGF1 knockout mouse establishes the PPARgamma-FGF1 axis as critical for maintaining metabolic homeostasis and insulin sensitization.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3358516/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3358516/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jonker, Johan W -- Suh, Jae Myoung -- Atkins, Annette R -- Ahmadian, Maryam -- Li, Pingping -- Whyte, Jamie -- He, Mingxiao -- Juguilon, Henry -- Yin, Yun-Qiang -- Phillips, Colin T -- Yu, Ruth T -- Olefsky, Jerrold M -- Henry, Robert R -- Downes, Michael -- Evans, Ronald M -- DK057978/DK/NIDDK NIH HHS/ -- DK062434/DK/NIDDK NIH HHS/ -- DK063491/DK/NIDDK NIH HHS/ -- DK090962/DK/NIDDK NIH HHS/ -- HL105278/HL/NHLBI NIH HHS/ -- P30 CA014195/CA/NCI NIH HHS/ -- P30 DK063491/DK/NIDDK NIH HHS/ -- R01 DK033651/DK/NIDDK NIH HHS/ -- R01 HL105278/HL/NHLBI NIH HHS/ -- R01 HL105278-21/HL/NHLBI NIH HHS/ -- R24 DK090962/DK/NIDDK NIH HHS/ -- R24 DK090962-02/DK/NIDDK NIH HHS/ -- R37 DK033651/DK/NIDDK NIH HHS/ -- R37 DK057978/DK/NIDDK NIH HHS/ -- R37 DK057978-34/DK/NIDDK NIH HHS/ -- U19 DK062434/DK/NIDDK NIH HHS/ -- U19 DK062434-10/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 May 17;485(7398):391-4. doi: 10.1038/nature10998.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22522926" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/drug effects/metabolism/pathology ; Animals ; Base Sequence ; Cell Size/drug effects ; Diabetes Mellitus, Experimental/chemically induced/genetics/pathology ; Diet, High-Fat/adverse effects ; Fibroblast Growth Factor 1/deficiency/*genetics/*metabolism ; *Homeostasis/drug effects ; Humans ; Inflammation/genetics ; Insulin/metabolism ; Insulin Resistance ; Intra-Abdominal Fat/drug effects/*metabolism/pathology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Necrosis/enzymology ; PPAR gamma/*metabolism ; Promoter Regions, Genetic/genetics ; Response Elements/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...