ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-12-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moine, H -- Mandel, J L -- New York, N.Y. -- Science. 2001 Dec 21;294(5551):2487-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉UPR9002 CNRS, 67084 Strasbourg Cedex, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11752559" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Brain/metabolism ; Crystallography, X-Ray ; Fragile X Mental Retardation Protein ; Fragile X Syndrome/genetics/*metabolism ; Gene Expression Regulation ; Humans ; Mice ; Nerve Tissue Proteins/chemistry/genetics/*metabolism ; Nucleic Acid Conformation ; Oligonucleotide Array Sequence Analysis ; Protein Biosynthesis ; Protein Structure, Tertiary ; RNA, Messenger/*chemistry/genetics/*metabolism ; *RNA-Binding Proteins ; Synapses/physiology ; Untranslated Regions
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-07-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Trottier, Y -- Mandel, J L -- New York, N.Y. -- Science. 2001 Jul 20;293(5529):445-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉IGBMC-CNRS-INSERM-ULP, Illkirch Cedex 67404, C.U. de Strasbourg, France. yvon@titus.u-strasbg.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11463904" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Brain-Derived Neurotrophic Factor/genetics/*metabolism ; CREB-Binding Protein ; Caspases/metabolism ; Cells, Cultured ; Cerebral Cortex/*metabolism/pathology ; Corpus Striatum/*metabolism/pathology ; Gene Expression Regulation ; Humans ; Huntington Disease/genetics/*metabolism/pathology ; Mice ; Mice, Transgenic ; Mutation ; Nerve Tissue Proteins/chemistry/genetics/*physiology ; Neurons/*metabolism/pathology ; Nuclear Proteins/chemistry/genetics/metabolism/*physiology ; Trans-Activators/metabolism ; Transcription Factors/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-02-05
    Description: Obesity has become a major worldwide challenge to public health, owing to an interaction between the Western 'obesogenic' environment and a strong genetic contribution. Recent extensive genome-wide association studies (GWASs) have identified numerous single nucleotide polymorphisms associated with obesity, but these loci together account for only a small fraction of the known heritable component. Thus, the 'common disease, common variant' hypothesis is increasingly coming under challenge. Here we report a highly penetrant form of obesity, initially observed in 31 subjects who were heterozygous for deletions of at least 593 kilobases at 16p11.2 and whose ascertainment included cognitive deficits. Nineteen similar deletions were identified from GWAS data in 16,053 individuals from eight European cohorts. These deletions were absent from healthy non-obese controls and accounted for 0.7% of our morbid obesity cases (body mass index (BMI) 〉or= 40 kg m(-2) or BMI standard deviation score 〉or= 4; P = 6.4 x 10(-8), odds ratio 43.0), demonstrating the potential importance in common disease of rare variants with strong effects. This highlights a promising strategy for identifying missing heritability in obesity and other complex traits: cohorts with extreme phenotypes are likely to be enriched for rare variants, thereby improving power for their discovery. Subsequent analysis of the loci so identified may well reveal additional rare variants that further contribute to the missing heritability, as recently reported for SIM1 (ref. 3). The most productive approach may therefore be to combine the 'power of the extreme' in small, well-phenotyped cohorts, with targeted follow-up in case-control and population cohorts.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880448/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880448/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Walters, R G -- Jacquemont, S -- Valsesia, A -- de Smith, A J -- Martinet, D -- Andersson, J -- Falchi, M -- Chen, F -- Andrieux, J -- Lobbens, S -- Delobel, B -- Stutzmann, F -- El-Sayed Moustafa, J S -- Chevre, J-C -- Lecoeur, C -- Vatin, V -- Bouquillon, S -- Buxton, J L -- Boute, O -- Holder-Espinasse, M -- Cuisset, J-M -- Lemaitre, M-P -- Ambresin, A-E -- Brioschi, A -- Gaillard, M -- Giusti, V -- Fellmann, F -- Ferrarini, A -- Hadjikhani, N -- Campion, D -- Guilmatre, A -- Goldenberg, A -- Calmels, N -- Mandel, J-L -- Le Caignec, C -- David, A -- Isidor, B -- Cordier, M-P -- Dupuis-Girod, S -- Labalme, A -- Sanlaville, D -- Beri-Dexheimer, M -- Jonveaux, P -- Leheup, B -- Ounap, K -- Bochukova, E G -- Henning, E -- Keogh, J -- Ellis, R J -- Macdermot, K D -- van Haelst, M M -- Vincent-Delorme, C -- Plessis, G -- Touraine, R -- Philippe, A -- Malan, V -- Mathieu-Dramard, M -- Chiesa, J -- Blaumeiser, B -- Kooy, R F -- Caiazzo, R -- Pigeyre, M -- Balkau, B -- Sladek, R -- Bergmann, S -- Mooser, V -- Waterworth, D -- Reymond, A -- Vollenweider, P -- Waeber, G -- Kurg, A -- Palta, P -- Esko, T -- Metspalu, A -- Nelis, M -- Elliott, P -- Hartikainen, A-L -- McCarthy, M I -- Peltonen, L -- Carlsson, L -- Jacobson, P -- Sjostrom, L -- Huang, N -- Hurles, M E -- O'Rahilly, S -- Farooqi, I S -- Mannik, K -- Jarvelin, M-R -- Pattou, F -- Meyre, D -- Walley, A J -- Coin, L J M -- Blakemore, A I F -- Froguel, P -- Beckmann, J S -- 077014/Wellcome Trust/United Kingdom -- 079534/Wellcome Trust/United Kingdom -- 082390/Wellcome Trust/United Kingdom -- 089061/Wellcome Trust/United Kingdom -- 1RL1MH083268-01/MH/NIMH NIH HHS/ -- 5R01HL087679-02/HL/NHLBI NIH HHS/ -- 5R01MH63706:02/MH/NIMH NIH HHS/ -- G0500539/Medical Research Council/United Kingdom -- G0600331/Medical Research Council/United Kingdom -- G0600331(77796)/Medical Research Council/United Kingdom -- G0900554/Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2010 Feb 4;463(7281):671-5. doi: 10.1038/nature08727.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Genomic Medicine, Imperial College London, London W12 0NN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20130649" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Age of Onset ; Aging ; Body Mass Index ; Case-Control Studies ; Child ; *Chromosome Deletion ; Chromosomes, Human, Pair 16/*genetics ; Cognition Disorders/complications/genetics ; Cohort Studies ; Europe ; Female ; Genome-Wide Association Study ; Heterozygote ; Humans ; Inheritance Patterns/genetics ; Male ; Mutation/genetics ; Obesity/complications/*genetics/*physiopathology ; *Penetrance ; Reproducibility of Results ; Sex Characteristics ; Young Adult
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-10-02
    Description: A unified genetic, physical, and functional map of the human X chromosome is being built through a concerted, international effort. About 40 percent of the 160 million base pairs of the X chromosome DNA have been cloned in overlapping, ordered contigs derived from yeast artificial chromosomes. This rapid progress toward a physical map is accelerating the identification of inherited disease genes, 26 of which are already cloned and more than 50 others regionally localized by linkage analysis. This article summarizes the mapping strategies now used and the impact of genome research on the understanding of X chromosome inactivation and X-linked diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mandel, J L -- Monaco, A P -- Nelson, D L -- Schlessinger, D -- Willard, H -- New York, N.Y. -- Science. 1992 Oct 2;258(5079):103-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire de Genetique Moleculaire des Eucaryotes du CNRS, INSERM, Strasbourg, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1439756" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Chromosome Mapping ; Dosage Compensation, Genetic ; Female ; *Genome, Human ; Humans ; Macropodidae ; Male ; Mice ; Mutation ; Sex Chromosome Aberrations ; *X Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1992-10-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mandel, J L -- Monaco, A P -- Nelson, D L -- Schlessinger, D -- Willard, H F -- Chipperfield, M -- Pearson, P -- Gilna, P -- Cinkosky, M -- New York, N.Y. -- Science. 1992 Oct 2;258(5079):87-102.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉INSERM, Strasbourg, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1439771" target="_blank"〉PubMed〈/a〉
    Keywords: *Chromosome Mapping ; Chromosomes, Human ; Female ; Genetic Linkage ; Genetic Markers ; *Genome, Human ; Humans ; Sex Chromosome Aberrations ; X Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1991-05-24
    Description: The fragile X syndrome, a common cause of inherited mental retardation, is characterized by an unusual mode of inheritance. Phenotypic expression has been linked to abnormal cytosine methylation of a single CpG island, at or very near the fragile site. Probes adjacent to this island detected very localized DNA rearrangements that constituted the fragile X mutations, and whose target was a 550-base pair GC-rich fragment. Normal transmitting males had a 150- to 400-base pair insertion that was inherited by their daughters either unchanged, or with small differences in size. Fragile X-positive individuals in the next generation had much larger fragments that differed among siblings and showed a generally heterogeneous pattern indicating somatic mutation. The mutated allele appeared unmethylated in normal transmitting males, methylated only on the inactive X chromosome in their daughters, and totally methylated in most fragile X males. However, some males had a mosaic pattern. Expression of the fragile X syndrome thus appears to result from a two-step mutation as well as a highly localized methylation. Carriers of the fragile X mutation can easily be detected regardless of sex or phenotypic expression, and rare apparent false negatives may result from genetic heterogeneity or misdiagnosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oberle, I -- Rousseau, F -- Heitz, D -- Kretz, C -- Devys, D -- Hanauer, A -- Boue, J -- Bertheas, M F -- Mandel, J L -- New York, N.Y. -- Science. 1991 May 24;252(5009):1097-102.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire de Genetique Moleculaire des Eucaryotes du CNRS, Institut de Chimie Biologique, Faculte de Medecine, Strasbourg, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2031184" target="_blank"〉PubMed〈/a〉
    Keywords: Base Composition ; DNA/*genetics ; Female ; Fragile X Syndrome/*genetics ; Gene Rearrangement ; Heterozygote Detection ; Humans ; Male ; Methylation ; *Mutation ; Pedigree ; Phenotype ; Restriction Mapping ; X Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-11-05
    Description: Spinocerebellar ataxia type 1 (SCA1) is a fatal neurodegenerative disease caused by expansion of a translated CAG repeat in Ataxin-1 (ATXN1). To determine the long-term effects of exercise, we implemented a mild exercise regimen in a mouse model of SCA1 and found a considerable improvement in survival accompanied by up-regulation of epidermal growth factor and consequential down-regulation of Capicua, which is an ATXN1 interactor. Offspring of Capicua mutant mice bred to SCA1 mice showed significant improvement of all disease phenotypes. Although polyglutamine-expanded Atxn1 caused some loss of Capicua function, further reduction of Capicua levels--either genetically or by exercise--mitigated the disease phenotypes by dampening the toxic gain of function. Thus, exercise might have long-term beneficial effects in other ataxias and neurodegenerative diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232424/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232424/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fryer, John D -- Yu, Peng -- Kang, Hyojin -- Mandel-Brehm, Caleigh -- Carter, Angela N -- Crespo-Barreto, Juan -- Gao, Yan -- Flora, Adriano -- Shaw, Chad -- Orr, Harry T -- Zoghbi, Huda Y -- 1F32NS055545/NS/NINDS NIH HHS/ -- HD24064/HD/NICHD NIH HHS/ -- NS022920/NS/NINDS NIH HHS/ -- NS045667/NS/NINDS NIH HHS/ -- NS27699/NS/NINDS NIH HHS/ -- NS27699-20S1/NS/NINDS NIH HHS/ -- P30 HD024064/HD/NICHD NIH HHS/ -- P30 HD024064-22/HD/NICHD NIH HHS/ -- P30 HD024064-23/HD/NICHD NIH HHS/ -- R01 NS027699/NS/NINDS NIH HHS/ -- R01 NS027699-20S1/NS/NINDS NIH HHS/ -- R01 NS027699-21/NS/NINDS NIH HHS/ -- R01 NS027699-22/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Nov 4;334(6056):690-3. doi: 10.1126/science.1212673.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22053053" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ataxin-1 ; Ataxins ; Cerebellum/metabolism ; Disease Models, Animal ; *Exercise Therapy ; Gene Knock-In Techniques ; Mice ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Nerve Tissue Proteins/genetics ; Nuclear Proteins/genetics ; Repressor Proteins/genetics/*physiology ; Spinocerebellar Ataxias/genetics/*therapy
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2002-10-26
    Description: The molecular mechanisms by which central nervous system-specific genes are expressed only in the nervous system and repressed in other tissues remain a central issue in developmental and regulatory biology. Here, we report that the zinc-finger gene-specific repressor element RE-1 silencing transcription factor/neuronal restricted silencing factor (REST/NRSF) can mediate extraneuronal restriction by imposing either active repression via histone deacetylase recruitment or long-term gene silencing using a distinct functional complex. Silencing of neuronal-specific genes requires the recruitment of an associated corepressor, CoREST, that serves as a functional molecular beacon for the recruitment of molecular machinery that imposes silencing across a chromosomal interval, including transcriptional units that do not themselves contain REST/NRSF response elements.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lunyak, Victoria V -- Burgess, Robert -- Prefontaine, Gratien G -- Nelson, Charles -- Sze, Sing-Hoi -- Chenoweth, Josh -- Schwartz, Phillip -- Pevzner, Pavel A -- Glass, Christopher -- Mandel, Gail -- Rosenfeld, Michael G -- New York, N.Y. -- Science. 2002 Nov 29;298(5599):1747-52. Epub 2002 Oct 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute (HHMI), Department of Computer Science and Engineering, School of Medicine, University of California, San Diego, 9500 Gilman Drive, Room 345, La Jolla, CA 92093-0648, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12399542" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Carrier Proteins ; Cell Line ; *Chromosomal Proteins, Non-Histone ; Chromosomes/*genetics/metabolism ; Chromosomes, Human/genetics/metabolism ; Co-Repressor Proteins ; Computational Biology ; CpG Islands ; DNA Methylation ; DNA-Binding Proteins/metabolism ; Gene Expression Profiling ; Gene Expression Regulation ; *Gene Silencing ; Histone Deacetylases/metabolism ; Humans ; Intracellular Signaling Peptides and Proteins ; Membrane Proteins ; Methyl-CpG-Binding Protein 2 ; Mice ; Models, Genetic ; NAV1.2 Voltage-Gated Sodium Channel ; Nerve Growth Factors/genetics ; Nerve Tissue Proteins/chemistry/genetics/*metabolism ; Neurons/*metabolism ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; Rats ; Repressor Proteins/chemistry/*metabolism ; Sodium Channels/genetics ; Transcription Factors/chemistry/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-07-01
    Description: Rett's syndrome (RTT) is an X-chromosome-linked autism spectrum disorder caused by loss of function of the transcription factor methyl-CpG-binding protein 2 (MeCP2). Although MeCP2 is expressed in most tissues, loss of MeCP2 expression results primarily in neurological symptoms. Earlier studies suggested the idea that RTT is due exclusively to loss of MeCP2 function in neurons. Although defective neurons clearly underlie the aberrant behaviours, we and others showed recently that the loss of MECP2 from glia negatively influences neurons in a non-cell-autonomous fashion. Here we show that in globally MeCP2-deficient mice, re-expression of Mecp2 preferentially in astrocytes significantly improved locomotion and anxiety levels, restored respiratory abnormalities to a normal pattern, and greatly prolonged lifespan compared to globally null mice. Furthermore, restoration of MeCP2 in the mutant astrocytes exerted a non-cell-autonomous positive effect on mutant neurons in vivo, restoring normal dendritic morphology and increasing levels of the excitatory glutamate transporter VGLUT1. Our study shows that glia, like neurons, are integral components of the neuropathology of RTT, and supports the targeting of glia as a strategy for improving the associated symptoms.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3268776/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3268776/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lioy, Daniel T -- Garg, Saurabh K -- Monaghan, Caitlin E -- Raber, Jacob -- Foust, Kevin D -- Kaspar, Brian K -- Hirrlinger, Petra G -- Kirchhoff, Frank -- Bissonnette, John M -- Ballas, Nurit -- Mandel, Gail -- P30 NS061800/NS/NINDS NIH HHS/ -- R01 HD056503/HD/NICHD NIH HHS/ -- R01 HD056503-03/HD/NICHD NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Jun 29;475(7357):497-500. doi: 10.1038/nature10214.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21716289" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anxiety/metabolism ; Astrocytes/metabolism ; Behavior, Animal ; Disease Progression ; Female ; Gene Expression Regulation ; Male ; Methyl-CpG-Binding Protein 2/deficiency/genetics/metabolism ; Mice ; Mice, Inbred C57BL ; Motor Activity ; Neuroglia/*metabolism/pathology ; Neurons/metabolism ; Rett Syndrome/*genetics/*metabolism/physiopathology ; Vesicular Glutamate Transport Protein 1/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1996-03-08
    Description: Friedreich's ataxia (FRDA) is an autosomal recessive, degenerative disease that involves the central and peripheral nervous systems and the heart. A gene, X25, was identified in the critical region for the FRDA locus on chromosome 9q13. This gene encodes a 210-amino acid protein, frataxin, that has homologs in distant species such as Caenorhabditis elegans and yeast. A few FRDA patients were found to have point mutations in X25, but the majority were homozygous for an unstable GAA trinucleotide expansion in the first X25 intron.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Campuzano, V -- Montermini, L -- Molto, M D -- Pianese, L -- Cossee, M -- Cavalcanti, F -- Monros, E -- Rodius, F -- Duclos, F -- Monticelli, A -- Zara, F -- Canizares, J -- Koutnikova, H -- Bidichandani, S I -- Gellera, C -- Brice, A -- Trouillas, P -- De Michele, G -- Filla, A -- De Frutos, R -- Palau, F -- Patel, P I -- Di Donato, S -- Mandel, J L -- Cocozza, S -- Koenig, M -- Pandolfo, M -- 722/Telethon/Italy -- NS34192/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1996 Mar 8;271(5254):1423-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department de Genetica, University of Valencia, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8596916" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Base Sequence ; Chromosomes, Human, Pair 9/*genetics ; DNA Primers ; Female ; Friedreich Ataxia/*genetics ; Genes, Recessive ; Heterozygote ; Humans ; *Introns ; *Iron-Binding Proteins ; Male ; Molecular Sequence Data ; Pedigree ; Point Mutation ; Polymerase Chain Reaction ; Proteins/chemistry/*genetics ; Sequence Alignment ; *Trinucleotide Repeats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...