ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-03-14
    Description: Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease caused by expansion of a glutamine-encoding repeat in ataxin 1 (ATXN1). In all known polyglutamine diseases, the glutamine expansion confers toxic functions onto the protein; however, the mechanism by which this occurs remains enigmatic, in light of the fact that the mutant protein apparently maintains interactions with its usual partners. Here we show that the expanded polyglutamine tract differentially affects the function of the host protein in the context of different endogenous protein complexes. Polyglutamine expansion in ATXN1 favours the formation of a particular protein complex containing RBM17, contributing to SCA1 neuropathology by means of a gain-of-function mechanism. Concomitantly, polyglutamine expansion attenuates the formation and function of another protein complex containing ATXN1 and capicua, contributing to SCA1 through a partial loss-of-function mechanism. This model provides mechanistic insight into the molecular pathogenesis of SCA1 as well as other polyglutamine diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2377396/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2377396/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lim, Janghoo -- Crespo-Barreto, Juan -- Jafar-Nejad, Paymaan -- Bowman, Aaron B -- Richman, Ronald -- Hill, David E -- Orr, Harry T -- Zoghbi, Huda Y -- P30 HD024064/HD/NICHD NIH HHS/ -- P30 HD024064-19/HD/NICHD NIH HHS/ -- R01 NS027699/NS/NINDS NIH HHS/ -- R01 NS027699-19/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2008 Apr 10;452(7188):713-8. doi: 10.1038/nature06731. Epub 2008 Mar 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18337722" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Ataxin-1 ; Ataxins ; Drosophila Proteins/genetics/metabolism ; Drosophila melanogaster ; Humans ; Mice ; Multiprotein Complexes/chemistry/metabolism ; Nerve Tissue Proteins/chemistry/genetics/*metabolism ; Nuclear Proteins/chemistry/genetics/*metabolism ; Open Reading Frames/genetics ; Peptides/genetics/*metabolism ; Protein Binding ; Protein Structure, Quaternary ; Purkinje Cells/cytology/metabolism ; RNA-Binding Proteins/genetics/metabolism ; Repressor Proteins/metabolism ; Ribonucleoprotein, U2 Small Nuclear/genetics/metabolism ; Spinocerebellar Ataxias/genetics/*metabolism/pathology ; *Trinucleotide Repeat Expansion/genetics ; Two-Hybrid System Techniques
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-11-05
    Description: Spinocerebellar ataxia type 1 (SCA1) is a fatal neurodegenerative disease caused by expansion of a translated CAG repeat in Ataxin-1 (ATXN1). To determine the long-term effects of exercise, we implemented a mild exercise regimen in a mouse model of SCA1 and found a considerable improvement in survival accompanied by up-regulation of epidermal growth factor and consequential down-regulation of Capicua, which is an ATXN1 interactor. Offspring of Capicua mutant mice bred to SCA1 mice showed significant improvement of all disease phenotypes. Although polyglutamine-expanded Atxn1 caused some loss of Capicua function, further reduction of Capicua levels--either genetically or by exercise--mitigated the disease phenotypes by dampening the toxic gain of function. Thus, exercise might have long-term beneficial effects in other ataxias and neurodegenerative diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232424/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232424/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fryer, John D -- Yu, Peng -- Kang, Hyojin -- Mandel-Brehm, Caleigh -- Carter, Angela N -- Crespo-Barreto, Juan -- Gao, Yan -- Flora, Adriano -- Shaw, Chad -- Orr, Harry T -- Zoghbi, Huda Y -- 1F32NS055545/NS/NINDS NIH HHS/ -- HD24064/HD/NICHD NIH HHS/ -- NS022920/NS/NINDS NIH HHS/ -- NS045667/NS/NINDS NIH HHS/ -- NS27699/NS/NINDS NIH HHS/ -- NS27699-20S1/NS/NINDS NIH HHS/ -- P30 HD024064/HD/NICHD NIH HHS/ -- P30 HD024064-22/HD/NICHD NIH HHS/ -- P30 HD024064-23/HD/NICHD NIH HHS/ -- R01 NS027699/NS/NINDS NIH HHS/ -- R01 NS027699-20S1/NS/NINDS NIH HHS/ -- R01 NS027699-21/NS/NINDS NIH HHS/ -- R01 NS027699-22/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Nov 4;334(6056):690-3. doi: 10.1126/science.1212673.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22053053" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ataxin-1 ; Ataxins ; Cerebellum/metabolism ; Disease Models, Animal ; *Exercise Therapy ; Gene Knock-In Techniques ; Mice ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Nerve Tissue Proteins/genetics ; Nuclear Proteins/genetics ; Repressor Proteins/genetics/*physiology ; Spinocerebellar Ataxias/genetics/*therapy
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...