ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Meteorology and Climatology  (2)
  • [abr] HB-EGF; heparin-binding epidermal growth factor
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochemical and Biophysical Research Communications 185 (1992), S. 103-109 
    ISSN: 0006-291X
    Keywords: [abr] EGF; epidermal growth factor ; [abr] HB-EGF; heparin-binding epidermal growth factor ; [abr] LTR; long terminal repeat ; [abr] MMTV; mouse mammary tumor virus ; [abr] PCR; polymerase chain reaction ; [abr] SDGF; schwannoma-derived growth factor ; [abr] TGF; transforming growth factor
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochemical and Biophysical Research Communications 185 (1992), S. 103-109 
    ISSN: 0006-291X
    Keywords: [abr] EGF; epidermal growth factor ; [abr] HB-EGF; heparin-binding epidermal growth factor ; [abr] LTR; long terminal repeat ; [abr] MMTV; mouse mammary tumor virus ; [abr] PCR; polymerase chain reaction ; [abr] SDGF; schwannoma-derived growth factor ; [abr] TGF; transforming growth factor
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Future changes in the stratospheric circulation could have an important impact on northern winter tropospheric climate change, given that sea level pressure (SLP) responds not only to tropospheric circulation variations but also to vertically coherent variations in troposphere-stratosphere circulation. Here we assess northern winter stratospheric change and its potential to influence surface climate change in the Coupled Model Intercomparison Project-Phase 5 (CMIP5) multimodel ensemble. In the stratosphere at high latitudes, an easterly change in zonally averaged zonal wind is found for the majority of the CMIP5 models, under the Representative Concentration Pathway 8.5 scenario. Comparable results are also found in the 1% CO2 increase per year projections, indicating that the stratospheric easterly change is common feature in future climate projections. This stratospheric wind change, however, shows a significant spread among the models. By using linear regression, we quantify the impact of tropical upper troposphere warming, polar amplification, and the stratospheric wind change on SLP. We find that the intermodel spread in stratospheric wind change contributes substantially to the intermodel spread in Arctic SLP change. The role of the stratosphere in determining part of the spread in SLP change is supported by the fact that the SLP change lags the stratospheric zonally averaged wind change. Taken together, these findings provide further support for the importance of simulating the coupling between the stratosphere and the troposphere, to narrow the uncertainty in the future projection of tropospheric circulation changes.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN17064 , Journal of Geophysical Research: Amospheres; 119; 13; 7979–7998
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Ozone changes and associated climate impacts in the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations are analyzed over the historical (1960-2005) and future (2006-2100) period under four Representative Concentration Pathways (RCP). In contrast to CMIP3, where half of the models prescribed constant stratospheric ozone, CMIP5 models all consider past ozone depletion and future ozone recovery. Multimodel mean climatologies and long-term changes in total and tropospheric column ozone calculated from CMIP5 models with either interactive or prescribed ozone are in reasonable agreement with observations. However, some large deviations from observations exist for individual models with interactive chemistry, and these models are excluded in the projections. Stratospheric ozone projections forced with a single halogen, but four greenhouse gas (GHG) scenarios show largest differences in the northern midlatitudes and in the Arctic in spring (approximately 20 and 40 Dobson units (DU) by 2100, respectively). By 2050, these differences are much smaller and negligible over Antarctica in austral spring. Differences in future tropospheric column ozone are mainly caused by differences in methane concentrations and stratospheric input, leading to approximately 10DU increases compared to 2000 in RCP 8.5. Large variations in stratospheric ozone particularly in CMIP5 models with interactive chemistry drive correspondingly large variations in lower stratospheric temperature trends. The results also illustrate that future Southern Hemisphere summertime circulation changes are controlled by both the ozone recovery rate and the rate of GHG increases, emphasizing the importance of simulating and taking into account ozone forcings when examining future climate projections.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN9138 , Journal of Geophysical Research: Atmospheres; 118; 10; 5029–5060
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...