ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: The LDST is a flight experiment demonstration designed to expose current and future candidate carbon dioxide removal system sorbents to an actual crewed space cabin environment to assess and compare sorption working capacity degradation resulting from long term operation. An analysis of sorbent materials returned to earth after approximately one year of operation in the International Space Station's (ISS) Carbon Dioxide Removal Assembly (CDRA) indicated as much as a 70% loss of working capacity of the silica gel desiccant material at the extreme system inlet location, with a gradient of capacity loss down the bed. The primary science objective is to assess the degradation of potential sorbents for exploration class missions and ISS upgrades when operated in a true crewed space cabin environment. A secondary objective is to compare degradation of flight test to a ground test unit with contaminant dosing to determine applicability of ground testing.
    Keywords: Man/System Technology and Life Support
    Type: M16-4963 , International Conference on Environmental Systems (ICES) 2016; Jul 10, 2016 - Jul 14, 2016; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: State-of-the-art United States Atmospheric Revitalization carbon dioxide (CO2) reduction is based on the Sabatier reaction process, which recovers approximately 50% of the oxygen (O2) from crew metabolic CO2. Oxygen recovery from carbon dioxide is constrained by the limited availability of reactant hydrogen. Post-processing of methane to recover hydrogen with the Umpqua Research Company Plasma Pyrolysis Assembly (PPA) has the potential to further close the Atmospheric Revitalization oxygen loop. The PPA decomposes methane into hydrogen and hydrocarbons, predominantly acetylene, and a small amount of solid carbon. The hydrogen must then be purified before it can be recycled for additional oxygen recovery. Long duration testing and evaluation of a four crew-member sized PPA and a discussion of hydrogen recycling system architectures are presented.
    Keywords: Man/System Technology and Life Support
    Type: M16-4972 , International Conference on Environmental Systems; Jul 10, 2016 - Jul 14, 2016; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: M15-4755 , International Conference on Environmental Systems; Jul 12, 2015 - Jul 16, 2015; Bellevue, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: A long-term goal for NASA is to enable crewed missions to Mars: first to the vicinity of Mars, and then to the Mars surface. These missions present new challenges for all aspects of spacecraft design in comparison with the International Space Station, as resupply is unavailable in the transit phase, and early return is not possible. Additionally, mass, power, and volume must be minimized for all phases to reduce propulsion needs. Mass reduction is particularly crucial for Mars surface landing and liftoff due to the challenges inherent in these operations for even much smaller payloads. In this paper we describe current and planned developments in the area of carbon dioxide removal to support future crewed Mars missions. Activities are also described that apply to both the resolution of anomalies observed in the ISS CDRA and the design of life support systems for future missions.
    Keywords: Man/System Technology and Life Support
    Type: M16-4964 , International Conference on Environmental Systems (ICES) 2016; Jul 10, 2016 - Jul 14, 2016; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: The United States Atmosphere Revitalization life support system on the International Space Station (ISS) performs several services for the crew including oxygen generation, trace contaminant control, carbon dioxide (CO2) removal, and oxygen recovery. Oxygen recovery is performed using a Sabatier reactor developed by Hamilton Sundstrand, wherein CO2 is reduced with hydrogen in a catalytic reactor to produce methane and water. The water product is purified in the Water Purification Assembly and recycled to the Oxygen Generation Assembly (OGA) to provide O2 to the crew. This architecture results in a theoretical maximum oxygen recovery from CO2 of approximately 54% due to the loss of reactant hydrogen in Sabatier-produced methane that is currently vented outside of ISS. Plasma Methane Pyrolysis technology (PPA), developed by Umpqua Research Company, provides the capability to further close the Atmosphere Revitalization oxygen loop by recovering hydrogen from Sabatier-produced methane. A key aspect of this technology approach is to purify the hydrogen from the PPA product stream which includes acetylene, unreacted methane and byproduct water and carbon monoxide. In 2015, four sub-scale hydrogen separation systems were delivered to NASA for evaluation. These included two electrolysis single-cell hydrogen purification cell stacks developed by Sustainable Innovations, LLC, a sorbent-based hydrogen purification unit using microwave power for sorbent regeneration developed by Umpqua Research Company, and a LaNi4.6Sn0.4 metal hydride produced by Hydrogen Consultants, Inc. Here we report the results of these evaluations, discuss potential architecture options, and propose future work.
    Keywords: Man/System Technology and Life Support
    Type: M16-4971 , International Conference on Environmental Systems (ICES); Jul 10, 2016 - Jul 14, 2016; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The presentation and videos that will be included in this technology talk will summarize the basic functions of spacesuits, the evolution of spacesuit design, and the development plans for future exploration spacesuits. The videos will run in a loop with no audio. The speakers will generally follow the slide presentation. There will be a 5-minute intro on basic suit functions, followed by a 7-10 minute discussion on suit history and evolution, then 7-10 minutes to cover the current ISS (International Space Station) suit and the development of the next generation exploration spacesuits. That will leave around 5-10 minutes for questions and answers.
    Keywords: Man/System Technology and Life Support
    Type: JSC-E-DAA-TN57899 , Space Center Houston Technology Talks; Apr 27, 2018; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: State-of-the-art life support oxygen recovery technology on the International Space Station is based on the Sabatier reaction where only about half of the oxygen required for the crew is recovered from metabolic carbon dioxide (CO2). The Sabatier reaction produces water as the primary product and methane as a byproduct. Oxygen recovery is constrained by both the limited availability of reactant hydrogen from water electrolysis and Sabatier methane (CH4) being vented as a waste product resulting in a continuous loss of reactant hydrogen. Post-processing methane with the Plasma Pyrolysis Assembly (PPA) to recover this hydrogen has the potential to substantially increase oxygen recovery and thus dramatically reduce the logistical challenges associated with oxygen resupply. The PPA decomposes methane into predominantly hydrogen and acetylene. A purification system is necessary to purify hydrogen before it is recycled back to the Sabatier reactor. Testing and evaluation of acetylene removal systems and PPA system architectures are presented and discussed.
    Keywords: Man/System Technology and Life Support
    Type: M17-5961 , International Conference on Environmental Systems; Jul 16, 2017 - Jul 20, 2017; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: NASA has embarked on the mission to enable humans to explore deep space, including the goal of sending humans to Mars. This journey will require significant developments in a wide range of technical areas as resupply and early return are not possible. Additionally, mass, power, and volume must be minimized for all phases to maximize propulsion availability. Among the critical areas identified for development are life support systems, which will require increases in reliability as well as reduce resource usage. Two primary points for reliability are the mechanical stability of sorbent pellets and recovery of CO2 sorbent productivity after off-nominal events. In this paper, we discuss the present efforts towards screening and characterizing commercially-available sorbents for extended operation in desiccant and CO2 removal beds. With minimized dusting as the primary criteria, a commercial 13X zeolite was selected and tested for performance and risk.
    Keywords: Man/System Technology and Life Support
    Type: ICES-2017-188 , M17-6066 , International Conference on Environmental Systems; Jul 16, 2017 - Jul 20, 2017; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: M17-6149 , International Conference on Environmental Systems; Jul 16, 2017 - Jul 20, 2017; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: M17-6162 , International Conference on Environmental Systems; Jul 16, 2017 - Jul 20, 2017; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...