ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell Survival  (3)
  • Male  (3)
  • American Association for the Advancement of Science (AAAS)  (5)
  • American Institute of Physics (AIP)
  • Oxford University Press
  • American Chemical Society (ACS)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (5)
  • American Institute of Physics (AIP)
  • Oxford University Press
  • American Chemical Society (ACS)
  • Nature Publishing Group (NPG)  (4)
  • 1
    Publication Date: 1988-11-25
    Description: The gp120 envelope glycoprotein of the human immunodeficiency virus (HIV), which is expressed on the surface of many HIV-infected cells, binds to the cell surface molecule CD4. Soluble derivatives of recombinant CD4 (rCD4) that bind gp120 with high affinity are attractive vehicles for targeting a cytotoxic reagent to HIV-infected cells. Soluble rCD4 was conjugated to the active subunit of the toxin ricin. This conjugate killed HIV-infected H9 cells but was 1/1000 as toxic to uninfected H9 cells (which do not express gp120) and was not toxic to Daudi cells (which express major histocompatibility class II antigens, the putative natural ligand for cell surface CD4). Specific killing of infected cells can be blocked by rgp120, rCD4, or a monoclonal antibody to the gp120 binding site on CD4.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Till, M A -- Ghetie, V -- Gregory, T -- Patzer, E J -- Porter, J P -- Uhr, J W -- Capon, D J -- Vitetta, E S -- CA-09082/CA/NCI NIH HHS/ -- CA-28149/CA/NCI NIH HHS/ -- CA-41081/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1988 Nov 25;242(4882):1166-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, University of Texas Southwestern Medical Center, Dallas 75235.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2847316" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, Differentiation, T-Lymphocyte/*administration & dosage/immunology ; Binding Sites ; Cell Line ; Cell Survival ; Electrophoresis, Polyacrylamide Gel ; HIV/*immunology ; HIV Envelope Protein gp120 ; Histocompatibility Antigens Class II/immunology ; Humans ; Recombinant Proteins/administration & dosage/immunology ; Retroviridae Proteins/*immunology/metabolism ; Ricin/metabolism/*pharmacology ; T-Lymphocytes/immunology/microbiology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1990-08-17
    Description: In 1988 to 1989, 698 adult cadavers in Abidjan's two largest morgues were studied, representing 38 to 43% of all adult deaths in the city over the study period, and 6 to 7% of annual deaths. Forty-one percent of male and 32% of female cadavers were infected with human immunodeficiency virus (HIV). Fifteen percent of adult male and 13% of adult female annual deaths are due to acquired immunodeficiency syndrome (AIDS). In Abidjan, AIDS is the leading cause of death and years of potential life lost in adult men, followed by unintentional injuries and tuberculosis. In women, AIDS is the second leading cause of death and premature mortality, after deaths related to pregnancy and abortion. AIDS-specific and AIDS-proportional mortality rates may be higher in other African cities where AIDS has been found for a longer time than in Abidjan.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉De Cock, K M -- Barrere, B -- Diaby, L -- Lafontaine, M F -- Gnaore, E -- Porter, A -- Pantobe, D -- Lafontant, G C -- Dago-Akribi, A -- Ette, M -- New York, N.Y. -- Science. 1990 Aug 17;249(4970):793-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Infectious Diseases, Centers for Disease Control, Atlanta, GA 30333.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2167515" target="_blank"〉PubMed〈/a〉
    Keywords: Acquired Immunodeficiency Syndrome/epidemiology/*mortality ; Adolescent ; Adult ; Africa ; Cause of Death ; Cote d'Ivoire ; Female ; HIV Seropositivity ; HIV-1/immunology ; HIV-2/immunology ; Humans ; Male
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-08-19
    Description: Eukaryotic flagella and cilia are built on a 9 + 2 array of microtubules plus 〉250 accessory proteins, forming a biological machine called the axoneme. Here we describe the three-dimensional structure of rapidly frozen axonemes from Chlamydomonas and sea urchin sperm, using cryoelectron tomography and image processing to focus on the motor enzyme dynein. Our images suggest a model for the way dynein generates force to slide microtubules. They also reveal two dynein linkers that may provide "hard-wiring" to coordinate motor enzyme action, both circumferentially and along the axoneme. Periodic densities were also observed inside doublet microtubules; these may contribute to doublet stability.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nicastro, Daniela -- Schwartz, Cindi -- Pierson, Jason -- Gaudette, Richard -- Porter, Mary E -- McIntosh, J Richard -- 2R37-GM55667/GM/NIGMS NIH HHS/ -- RR 000592/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2006 Aug 18;313(5789):944-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for 3D Electron Microscopy of Cells, Department of Molecular, Cellular, and Developmental Biology, CB 347, University of Colorado, Boulder, CO 80309-0347, USA. nicastro@colorado.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16917055" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carrier Proteins/chemistry/ultrastructure ; Chlamydomonas reinhardtii/ultrastructure ; Cryoelectron Microscopy ; Dyneins/*chemistry/physiology/*ultrastructure ; Flagella/chemistry/physiology/*ultrastructure ; Freezing ; Image Processing, Computer-Assisted ; Imaging, Three-Dimensional ; Male ; Microtubule-Associated Proteins ; Microtubules/chemistry/physiology/*ultrastructure ; Models, Biological ; Molecular Motor Proteins/chemistry/ultrastructure ; Protein Structure, Tertiary ; Sea Urchins ; Sperm Tail/chemistry/physiology/*ultrastructure ; Tomography
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006-02-14
    Description: The current model of apoptosis holds that upstream signals lead to activation of downstream effector caspases. We generated mice deficient in the two effectors, caspase 3 and caspase 7, which died immediately after birth with defects in cardiac development. Fibroblasts lacking both enzymes were highly resistant to both mitochondrial and death receptor-mediated apoptosis, displayed preservation of mitochondrial membrane potential, and had defective nuclear translocation of apoptosis-inducing factor (AIF). Furthermore, the early apoptotic events of Bax translocation and cytochrome c release were also delayed. We conclude that caspases 3 and 7 are critical mediators of mitochondrial events of apoptosis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3738210/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3738210/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lakhani, Saquib A -- Masud, Ali -- Kuida, Keisuke -- Porter, George A Jr -- Booth, Carmen J -- Mehal, Wajahat Z -- Inayat, Irteza -- Flavell, Richard A -- 1 K08 HD044580/HD/NICHD NIH HHS/ -- 5 K12 HD01401/HD/NICHD NIH HHS/ -- K08 DK002965/DK/NIDDK NIH HHS/ -- K08 DK002965-04/DK/NIDDK NIH HHS/ -- K12 HD00850/HD/NICHD NIH HHS/ -- NIDDK P30-34989/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2006 Feb 10;311(5762):847-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16469926" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Apoptosis Inducing Factor/metabolism ; Caspase 3 ; Caspase 7 ; Caspases/deficiency/*metabolism ; Cell Nucleus/metabolism ; Cell Shape ; Cell Survival ; Cells, Cultured ; Cytochromes c/metabolism ; DNA Fragmentation ; Female ; Fibroblasts/cytology ; Heart/embryology ; Heart Defects, Congenital/etiology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mitochondria/metabolism/*physiology ; Mitochondrial Membranes/physiology ; Permeability ; T-Lymphocytes/cytology ; bcl-2-Associated X Protein/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-02-26
    Description: 5-Methylthioadenosine phosphorylase (MTAP) is a key enzyme in the methionine salvage pathway. The MTAP gene is frequently deleted in human cancers because of its chromosomal proximity to the tumor suppressor gene CDKN2A. By interrogating data from a large-scale short hairpin RNA-mediated screen across 390 cancer cell line models, we found that the viability of MTAP-deficient cancer cells is impaired by depletion of the protein arginine methyltransferase PRMT5. MTAP-deleted cells accumulate the metabolite methylthioadenosine (MTA), which we found to inhibit PRMT5 methyltransferase activity. Deletion of MTAP in MTAP-proficient cells rendered them sensitive to PRMT5 depletion. Conversely, reconstitution of MTAP in an MTAP-deficient cell line rescued PRMT5 dependence. Thus, MTA accumulation in MTAP-deleted cancers creates a hypomorphic PRMT5 state that is selectively sensitized toward further PRMT5 inhibition. Inhibitors of PRMT5 that leverage this dysregulated metabolic state merit further investigation as a potential therapy for MTAP/CDKN2A-deleted tumors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mavrakis, Konstantinos J -- McDonald, E Robert 3rd -- Schlabach, Michael R -- Billy, Eric -- Hoffman, Gregory R -- deWeck, Antoine -- Ruddy, David A -- Venkatesan, Kavitha -- Yu, Jianjun -- McAllister, Gregg -- Stump, Mark -- deBeaumont, Rosalie -- Ho, Samuel -- Yue, Yingzi -- Liu, Yue -- Yan-Neale, Yan -- Yang, Guizhi -- Lin, Fallon -- Yin, Hong -- Gao, Hui -- Kipp, D Randal -- Zhao, Songping -- McNamara, Joshua T -- Sprague, Elizabeth R -- Zheng, Bing -- Lin, Ying -- Cho, Young Shin -- Gu, Justin -- Crawford, Kenneth -- Ciccone, David -- Vitari, Alberto C -- Lai, Albert -- Capka, Vladimir -- Hurov, Kristen -- Porter, Jeffery A -- Tallarico, John -- Mickanin, Craig -- Lees, Emma -- Pagliarini, Raymond -- Keen, Nicholas -- Schmelzle, Tobias -- Hofmann, Francesco -- Stegmeier, Frank -- Sellers, William R -- New York, N.Y. -- Science. 2016 Mar 11;351(6278):1208-13. doi: 10.1126/science.aad5944. Epub 2016 Feb 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA. ; Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland. ; Novartis Institutes for Biomedical Research, Emeryville, CA 94608, USA. ; China Novartis Institutes for Biomedical Research, Shanghai 201203, China. ; Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA. william.sellers@novartis.com fstegmeier@ksqtx.com.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26912361" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line, Tumor ; Cell Survival ; Cyclin-Dependent Kinase Inhibitor p16/genetics/*metabolism ; Deoxyadenosines/metabolism ; Gene Deletion ; Humans ; Methionine/*metabolism ; Neoplasms/drug therapy/genetics/*metabolism ; Protein-Arginine N-Methyltransferases/genetics/*metabolism ; Purine-Nucleoside Phosphorylase/genetics/*metabolism ; RNA, Small Interfering/genetics ; Thionucleosides/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...