ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-08-22
    Description: Author(s): Masato Hamada, Takehito Yokoyama, and Shuichi Murakami We theoretically investigate spin current and magnetic response induced by the twisting phonon mode in carbon nanotubes via the spin-rotation coupling. An effective magnetic field due to the twisting mode induces both spin and orbital magnetizations. The induced spin and orbital magnetizations have … [Phys. Rev. B 92, 060409(R)] Published Fri Aug 21, 2015
    Keywords: Magnetism
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-05-15
    Description: Author(s): Keitaro Eguchi, Yasumasa Takagi, Takeshi Nakagawa, and Toshihiko Yokoyama We investigated the growth process and magnetic properties of iron deposited on Si 3 N 4 /Si(111)-( 8×8 ) and clean Si(111)-( 7×7 ) substrates by scanning tunneling microscopy, x-ray magnetic circular dichroism, and the magneto-optical Kerr effect measurements. These experiments reveal that, on clean Si(111... [Phys. Rev. B 85, 174415] Published Mon May 14, 2012
    Keywords: Magnetism
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-01-24
    Description: Author(s): K. Hild, G. Schönhense, H. J. Elmers, T. Nakagawa, T. Yokoyama, K. Tarafder, and P. M. Oppeneer Magnetic circular dichroism (MCD) in near-threshold photoemission is measured for a perpendicularly magnetized Cs/Co/Pt(111) film with work function adjusted by Cs adsorption. For one-photon photoemission (1PPE) the MCD asymmetry is recorded at a fixed photon energy of h ν  = 3.06 eV and varying work ... [Phys. Rev. B 85, 014426] Published Mon Jan 23, 2012
    Keywords: Magnetism
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-10-26
    Description: Author(s): Takeshi Nakagawa, Yasumasa Takagi, Toshihiko Yokoyama, Torsten Methfessel, Sandra Diehl, and Hans-Joachim Elmers We have directly investigated the giant magnetic anisotropy energy and coercivity of monolayer (ML) Fe islands and stripes on flat and stepped W(110) surfaces using x-ray magnetic circular dichroism. Both for islands and stripes, the magnetic anisotropy energy is ∼1.0 meV/atom, independent of the co... [Phys. Rev. B 86, 144418] Published Thu Oct 25, 2012
    Keywords: Magnetism
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-10-06
    Description: A worldwide initiative in structural genomics aims to capitalize on the recent successes of the genome projects. Substantial new investments in structural genomics in the past 2 years indicate the high level of support for these international efforts. Already, enormous progress has been made on high-throughput methodologies and technologies that will speed up macromolecular structure determinations. Recent international meetings have resulted in the formation of an International Structural Genomics Organization to formulate policy and foster cooperation between the public and private efforts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stevens, R C -- Yokoyama, S -- Wilson, I A -- P50 GM62411/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Oct 5;294(5540):89-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Joint Center for Structural Genomics, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11588249" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Computational Biology ; Congresses as Topic ; Costs and Cost Analysis ; Crystallography, X-Ray ; Databases, Factual ; *Genomics ; Guidelines as Topic ; Humans ; Information Management ; Information Services ; International Cooperation ; Internet ; Nuclear Magnetic Resonance, Biomolecular ; Patents as Topic ; Private Sector ; *Protein Conformation ; Protein Folding ; Proteins/*chemistry ; *Proteome ; Public Sector ; Publishing ; Technology Transfer
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2001-05-08
    Description: Natural killer (NK) cells are lymphocytes that can be distinguished from T and B cells through their involvement in innate immunity and their lack of rearranged antigen receptors. Although NK cells and their receptors were initially characterized in terms of tumor killing in vitro, we have determined that the NK cell activation receptor, Ly-49H, is critically involved in resistance to murine cytomegalovirus in vivo. Ly-49H requires an immunoreceptor tyrosine-based activation motif (ITAM)-containing transmembrane molecule for expression and signal transduction. Thus, NK cells use receptors functionally resembling ITAM-coupled T and B cell antigen receptors to provide vital innate host defense.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brown, M G -- Dokun, A O -- Heusel, J W -- Smith, H R -- Beckman, D L -- Blattenberger, E A -- Dubbelde, C E -- Stone, L R -- Scalzo, A A -- Yokoyama, W M -- New York, N.Y. -- Science. 2001 May 4;292(5518):934-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Rheumatology Division, Washington University School of Medicine, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11340207" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal/immunology ; *Antigens, Ly ; Crosses, Genetic ; Cytotoxicity, Immunologic ; Female ; Haplotypes ; Herpesviridae Infections/*immunology ; Histocompatibility Antigens Class I/immunology ; Humans ; *Immunity, Innate ; Killer Cells, Natural/*immunology ; Lectins, C-Type ; Ligands ; *Lymphocyte Activation ; Male ; Membrane Glycoproteins/genetics/*immunology ; Mice ; Mice, Inbred C57BL ; Mice, Inbred DBA ; Muromegalovirus/*immunology ; Phenotype ; Receptors, Immunologic/*immunology ; Receptors, NK Cell Lectin-Like ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-01-08
    Description: Natural killer (NK) cells were originally defined as effector lymphocytes of innate immunity endowed with constitutive cytolytic functions. More recently, a more nuanced view of NK cells has emerged. NK cells are now recognized to express a repertoire of activating and inhibitory receptors that is calibrated to ensure self-tolerance while allowing efficacy against assaults such as viral infection and tumor development. Moreover, NK cells do not react in an invariant manner but rather adapt to their environment. Finally, recent studies have unveiled that NK cells can also mount a form of antigen-specific immunologic memory. NK cells thus exert sophisticated biological functions that are attributes of both innate and adaptive immunity, blurring the functional borders between these two arms of the immune response.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3089969/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3089969/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vivier, Eric -- Raulet, David H -- Moretta, Alessandro -- Caligiuri, Michael A -- Zitvogel, Laurence -- Lanier, Lewis L -- Yokoyama, Wayne M -- Ugolini, Sophie -- AI035021/AI/NIAID NIH HHS/ -- AI039642/AI/NIAID NIH HHS/ -- AI066897/AI/NIAID NIH HHS/ -- AI068129/AI/NIAID NIH HHS/ -- AI33903/AI/NIAID NIH HHS/ -- AI34385/AI/NIAID NIH HHS/ -- AI51345/AI/NIAID NIH HHS/ -- AI5716/AI/NIAID NIH HHS/ -- CA093678/CA/NCI NIH HHS/ -- CA095137/CA/NCI NIH HHS/ -- CA16058/CA/NCI NIH HHS/ -- CA68458/CA/NCI NIH HHS/ -- CA95426/CA/NCI NIH HHS/ -- R01 AI035021/AI/NIAID NIH HHS/ -- R01 AI035021-11/AI/NIAID NIH HHS/ -- R01 AI039642/AI/NIAID NIH HHS/ -- R01 AI039642-11/AI/NIAID NIH HHS/ -- R01 CA093678/CA/NCI NIH HHS/ -- R01 CA093678-10/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Jan 7;331(6013):44-9. doi: 10.1126/science.1198687.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre d'Immunologie de Marseille-Luminy (CIML), Universite de la Mediterranee UM 631, Campus de Luminy, 13288 Marseille, France. vivier@ciml.univ-mrs.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21212348" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptive Immunity ; Animals ; Humans ; *Immunity, Innate ; Immunologic Memory ; Killer Cells, Natural/*immunology ; Neoplasms/immunology/therapy ; Receptors, Immunologic/immunology/metabolism ; Self Tolerance ; Virus Diseases/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-11-29
    Description: Chromatin reorganization is governed by multiple post-translational modifications of chromosomal proteins and DNA. These histone modifications are reversible, dynamic events that can regulate DNA-driven cellular processes. However, the molecular mechanisms that coordinate histone modification patterns remain largely unknown. In metazoans, reversible protein modification by O-linked N-acetylglucosamine (GlcNAc) is catalysed by two enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). However, the significance of GlcNAcylation in chromatin reorganization remains elusive. Here we report that histone H2B is GlcNAcylated at residue S112 by OGT in vitro and in living cells. Histone GlcNAcylation fluctuated in response to extracellular glucose through the hexosamine biosynthesis pathway (HBP). H2B S112 GlcNAcylation promotes K120 monoubiquitination, in which the GlcNAc moiety can serve as an anchor for a histone H2B ubiquitin ligase. H2B S112 GlcNAc was localized to euchromatic areas on fly polytene chromosomes. In a genome-wide analysis, H2B S112 GlcNAcylation sites were observed widely distributed over chromosomes including transcribed gene loci, with some sites co-localizing with H2B K120 monoubiquitination. These findings suggest that H2B S112 GlcNAcylation is a histone modification that facilitates H2BK120 monoubiquitination, presumably for transcriptional activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fujiki, Ryoji -- Hashiba, Waka -- Sekine, Hiroki -- Yokoyama, Atsushi -- Chikanishi, Toshihiro -- Ito, Saya -- Imai, Yuuki -- Kim, Jaehoon -- He, Housheng Hansen -- Igarashi, Katsuhide -- Kanno, Jun -- Ohtake, Fumiaki -- Kitagawa, Hirochika -- Roeder, Robert G -- Brown, Myles -- Kato, Shigeaki -- England -- Nature. 2011 Nov 27;480(7378):557-60. doi: 10.1038/nature10656.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22121020" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylglucosamine/*metabolism ; Amino Acid Sequence ; Animals ; Cell Line ; HeLa Cells ; Histones/chemistry/genetics/*metabolism ; Humans ; Models, Molecular ; Mutation ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry/metabolism ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-04-10
    Description: Adiponectin stimulation of its receptors, AdipoR1 and AdipoR2, increases the activities of 5' AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor (PPAR), respectively, thereby contributing to healthy longevity as key anti-diabetic molecules. AdipoR1 and AdipoR2 were predicted to contain seven transmembrane helices with the opposite topology to G-protein-coupled receptors. Here we report the crystal structures of human AdipoR1 and AdipoR2 at 2.9 and 2.4 A resolution, respectively, which represent a novel class of receptor structure. The seven-transmembrane helices, conformationally distinct from those of G-protein-coupled receptors, enclose a large cavity where three conserved histidine residues coordinate a zinc ion. The zinc-binding structure may have a role in the adiponectin-stimulated AMPK phosphorylation and UCP2 upregulation. Adiponectin may broadly interact with the extracellular face, rather than the carboxy-terminal tail, of the receptors. The present information will facilitate the understanding of novel structure-function relationships and the development and optimization of AdipoR agonists for the treatment of obesity-related diseases, such as type 2 diabetes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477036/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477036/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tanabe, Hiroaki -- Fujii, Yoshifumi -- Okada-Iwabu, Miki -- Iwabu, Masato -- Nakamura, Yoshihiro -- Hosaka, Toshiaki -- Motoyama, Kanna -- Ikeda, Mariko -- Wakiyama, Motoaki -- Terada, Takaho -- Ohsawa, Noboru -- Hato, Masakatsu -- Ogasawara, Satoshi -- Hino, Tomoya -- Murata, Takeshi -- Iwata, So -- Hirata, Kunio -- Kawano, Yoshiaki -- Yamamoto, Masaki -- Kimura-Someya, Tomomi -- Shirouzu, Mikako -- Yamauchi, Toshimasa -- Kadowaki, Takashi -- Yokoyama, Shigeyuki -- 062164/Z/00/Z/Wellcome Trust/United Kingdom -- 089809/Wellcome Trust/United Kingdom -- BB/G02325/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/G023425/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2015 Apr 16;520(7547):312-6. doi: 10.1038/nature14301. Epub 2015 Apr 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] Department of Biophysics and Biochemistry and Laboratory of Structural Biology, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [3] Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [4] RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan. ; 1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan. ; 1] Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [2] Department of Integrated Molecular Science on Metabolic Diseases, 22nd Century Medical and Research Center, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. ; 1] Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [2] Department of Integrated Molecular Science on Metabolic Diseases, 22nd Century Medical and Research Center, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [3] PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan. ; 1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [3] RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan. ; 1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan. ; RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan. ; Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan. ; 1] Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan [2] JST, Research Acceleration Program, Membrane Protein Crystallography Project, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan. ; 1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan [3] JST, Research Acceleration Program, Membrane Protein Crystallography Project, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan [4] Department of Chemistry, Graduate School of Science, Chiba University, Yayoi-cho, Inage, Chiba 263-8522, Japan. ; 1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan [3] JST, Research Acceleration Program, Membrane Protein Crystallography Project, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan [4] Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College, London SW7 2AZ, UK [5] Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK [6] RIKEN SPring-8 Center, Harima Institute, Kouto, Sayo, Hyogo 679-5148, Japan. ; RIKEN SPring-8 Center, Harima Institute, Kouto, Sayo, Hyogo 679-5148, Japan. ; 1] Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [2] Department of Integrated Molecular Science on Metabolic Diseases, 22nd Century Medical and Research Center, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [3] CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan. ; 1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] Department of Biophysics and Biochemistry and Laboratory of Structural Biology, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [3] RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25855295" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; Histidine/chemistry/metabolism ; Humans ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Receptors, Adiponectin/*chemistry/metabolism ; Structure-Activity Relationship ; Zinc/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-11-15
    Description: So far, two genes associated with familial melanoma have been identified, accounting for a minority of genetic risk in families. Mutations in CDKN2A account for approximately 40% of familial cases, and predisposing mutations in CDK4 have been reported in a very small number of melanoma kindreds. Here we report the whole-genome sequencing of probands from several melanoma families, which we performed in order to identify other genes associated with familial melanoma. We identify one individual carrying a novel germline variant (coding DNA sequence c.G1075A; protein sequence p.E318K; rs149617956) in the melanoma-lineage-specific oncogene microphthalmia-associated transcription factor (MITF). Although the variant co-segregated with melanoma in some but not all cases in the family, linkage analysis of 31 families subsequently identified to carry the variant generated a log of odds (lod) score of 2.7 under a dominant model, indicating E318K as a possible intermediate risk variant. Consistent with this, the E318K variant was significantly associated with melanoma in a large Australian case-control sample. Likewise, it was similarly associated in an independent case-control sample from the United Kingdom. In the Australian sample, the variant allele was significantly over-represented in cases with a family history of melanoma, multiple primary melanomas, or both. The variant allele was also associated with increased naevus count and non-blue eye colour. Functional analysis of E318K showed that MITF encoded by the variant allele had impaired sumoylation and differentially regulated several MITF targets. These data indicate that MITF is a melanoma-predisposition gene and highlight the utility of whole-genome sequencing to identify novel rare variants associated with disease susceptibility.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3266855/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3266855/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yokoyama, Satoru -- Woods, Susan L -- Boyle, Glen M -- Aoude, Lauren G -- MacGregor, Stuart -- Zismann, Victoria -- Gartside, Michael -- Cust, Anne E -- Haq, Rizwan -- Harland, Mark -- Taylor, John C -- Duffy, David L -- Holohan, Kelly -- Dutton-Regester, Ken -- Palmer, Jane M -- Bonazzi, Vanessa -- Stark, Mitchell S -- Symmons, Judith -- Law, Matthew H -- Schmidt, Christopher -- Lanagan, Cathy -- O'Connor, Linda -- Holland, Elizabeth A -- Schmid, Helen -- Maskiell, Judith A -- Jetann, Jodie -- Ferguson, Megan -- Jenkins, Mark A -- Kefford, Richard F -- Giles, Graham G -- Armstrong, Bruce K -- Aitken, Joanne F -- Hopper, John L -- Whiteman, David C -- Pharoah, Paul D -- Easton, Douglas F -- Dunning, Alison M -- Newton-Bishop, Julia A -- Montgomery, Grant W -- Martin, Nicholas G -- Mann, Graham J -- Bishop, D Timothy -- Tsao, Hensin -- Trent, Jeffrey M -- Fisher, David E -- Hayward, Nicholas K -- Brown, Kevin M -- 10118/Cancer Research UK/United Kingdom -- 10589/Cancer Research UK/United Kingdom -- AR043369-14/AR/NIAMS NIH HHS/ -- C490/A11021/Cancer Research UK/United Kingdom -- C588/A10589/Cancer Research UK/United Kingdom -- C588/A4994/Cancer Research UK/United Kingdom -- C8197/A10123/Cancer Research UK/United Kingdom -- C8216/A6129/Cancer Research UK/United Kingdom -- CA88363/CA/NCI NIH HHS/ -- K24CA149202/CA/NCI NIH HHS/ -- P50CA9368/CA/NCI NIH HHS/ -- R01 AR043369/AR/NIAMS NIH HHS/ -- R01 CA-83115-01A2/CA/NCI NIH HHS/ -- R01 CA088363/CA/NCI NIH HHS/ -- R01 CA088363-09/CA/NCI NIH HHS/ -- R01 CA83115/CA/NCI NIH HHS/ -- England -- Nature. 2011 Nov 13;480(7375):99-103. doi: 10.1038/nature10630.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Dermatology, Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Massachusetts 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22080950" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Aged ; Aged, 80 and over ; Female ; Gene Expression Regulation, Neoplastic ; *Genetic Predisposition to Disease ; Humans ; Male ; Melanoma/*genetics ; Microphthalmia-Associated Transcription Factor/*genetics ; Middle Aged ; *Mutation ; Sumoylation/genetics ; Young Adult
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...