ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-12-03
    Description: The role of unsteady flow processes in establishing the performance of axial flow turbomachinery was investigated. The development of the flow model, as defined by the time average flow equations associated with the passage of the blade row embedded in a multistage configuration, is presented. The mechanisms for unsteady momentum and energy transport is outlined. The modeling of the unsteady momentum and energy transport are discussed. The procedure for simulating unsteady multistage turbomachinery flows is described.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Unsteady Flows in Turbomachines; Volume 2; VKI-LS-1996-05-Vol-2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: A mathematical model for closing or mathematically completing the system of equations is proposed. The model describes the time average flow field through the blade passages of multistage turbomachinery. These average-passage equation systems govern a conceptual model useful in turbomachinery aerodynamic design and analysis. The closure model was developed to insure a consistency between these equations and the axisymmetric through-flow equations. The closure model was incorporated into a calculation code for use in the simulation of the flow field about a high-speed counter rotating propeller and a high-speed fan stage.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Unsteady Flows in Turbomachines; Volume 2; VKI-LS-1996-05-Vol-2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-12-03
    Description: The objective of this study is to provide careful qualification and detailed measurements in a re-creation of the Obi experiment. The work will include extensive documentation of the flow two-dimensionality and detailed measurements required for testing of flow computations. Also important to this study is the close interaction of the experimental and computational groups to improve the utility of the data obtained and the accuracy of computation.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Annual Research Briefs-1996; 243-248; NASA-TM-112358
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-12-03
    Description: Reducing the infinite degrees of freedom inherent in fluid motion into a manageable number of modes to analyze fluid motion is presented. The concepts behind the center manifold technique are used. Study of the Blasius boundary layer and a precise description of stability within the flow field are discussed.
    Keywords: Fluid Mechanics and Heat Transfer
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-12-03
    Description: The effect of the unsteady flow field in a multistage compressor on the time-averaged performance was assessed. The energy transport by the unsteady deterministic flow field was taken into account. The magnitude of the body force resulting from the aerodynamic loading on a blade row was compared to the gradient of the stress tensor associated with the unsteady time-resolved flow field generated by the blade row. The magnitude of the work performed by these forces was compared to the divergence of the energy correlations produced by the unsteady time-resolved flow field. The stress tensor and the energy correlations are non-negligible in the end wall regions. The results suggest that the turbulence is the primary source of flow mixing in the midspan region.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Unsteady Flows in Turbomachines; Volume 2; VKI-LS-1996-05-Vol-2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: Work continued on two projects which had been started during previous years. Both projects involve calculations of the subsonic, turbulent far wake of a two-dimensional object at a Reynolds number of 1000 (based on wake momentum thickness). This flow was used as a test case for direct comparison of various turbulence models and a direct numerical simulations (DNS) of this flow were undertaken. In the turbulence model comparison studies, for any particular model tested, a unique self-similar solution was obtained far enough downstream, regardless of inlet conditions. Furthermore, different turbulence models led to different far-wake equilibrium solutions. No turbulence model could correctly predict all features of the turbulent far wake. For example, the spreading rate and turbulent shear stresses were underpredicted by all the standard models (both two-equation and full Reynolds stress models). In cases where a more correct spreading rate was achieved, it was at the expense of the turbulent kinetic energy, which was overpredicted. In general, the Algebraic Dissipation Rate Model of Gatski and Speziale, 1992, when added to any of the standard models, improved the results dramatically. Also, full Reynolds stress closure models did a much better job at predicting the shapes of both the mean and turbulence profiles, but the spreading rate was not significantly improved over that predicted by the simpler two-equation models. There are two main conclusions from these studies: First, in a comparison such as this, it is not enough to compare just one parameter, like the spreading rate. A good prediction for one parameter does not necessarily imply good predictions for all parameters in a flow. Second, since no turbulence model could correctly predict the turbulent far wake, much of the important physics of turbulent free shear flows is apparently lost by the assumptions inherent in today's methods of turbulence modeling; turbulence models must be improved. Direct simulations of this flow were begun last year in order to provide a data base through which some of the deficiencies of the existing turbulence models could be identified. Quantities such as the pressure-strain correlation, turbulent diffusion, and the dissipation rate tensor can be easily calculated from the DNS results, whereas these quantities are nearly impossible to measure experimentally. Improvements to existing turbulence models (and development of new models) require knowledge about flow quantities such as these. During this summer, diagnostics codes were written which will calculate the parameters mentioned above, along with other single-point and multi-point statistics. The DNS calculations are still in progress at the time of this writing. When these calculations are complete, the diagnostics codes will be applied so that the results can aid turbulence modelers. In addition, the results will show whether or not there exists a universal equilibrium turbulent far wake, independent of initial conditions.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: The 1995 NASA-ODU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program; 69; NASA-CR-198210
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-12-03
    Description: The Geophysical Fluid Flow Cell (GFFC) experiment performed visualizations of thermal convection in a rotating differentially heated spherical shell of fluid. In these experiments dielectric polarization forces are used to generate a radially directed buoyancy force. This enables the laboratory simulation of a number of geophysically and astrophysically important situations in which sphericity and rotation both impose strong constraints on global scale fluid motions. During USML-2 a large set of experiments with spherically symmetric heating were carried out. These enabled the determination of critical points for the transition to various forms of non-axisymmetric convection and, for highly turbulent flows, the transition latitudes separating the different modes of motion. This paper presents a first analysis of these experiments as well as data on the general performance of the instrument during the USML-2 flight.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Second United States Microgravity Laboratory: One Year Report; Volume 1; 7.185-7.208; NASA/TM-1998-208697/VOL1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2007-03-22
    Description: A steady, three dimensional average-passage equation system was derived. The purpose was to simulate multistage turbomachinery flows. These equations describe a steady, viscous flow that is periodic from blade passage to blade passage. Moreover, these equations have a closure problem that is similar to that of the Reynolds-average Navier-Stokes equations. A scaled form of the average-passage equation system could provide an improved mathematical model for simulating the flow in the design and in the off-design conditions of a multistage machine.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Unsteady Flows in Turbomachines; Volume 2; VKI-LS-1996-05-Vol-2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-06-07
    Description: A loosely coupled two-phase vacuum water plume model has been developed. This model consists of a source flow model to describe the expansion of water vapor, and the Lagrangian equations of motion for particle trajectories. Gas/Particle interaction is modeled through the drag force induced by the relative velocities. Particles are assumed traveling along streamlines. The equations of motion are integrated to obtain particle velocity along the streamline. This model has been used to predict the mass flux in a 5 meter radius hemispherical domain resulting from the burst of a water jet of 1.5 mm in diameter, mass flow rate of 24.2 g/s, and stagnation pressure of 21.0 psia, which is the nominal Orbiter water dump condition. The result is compared with an empirical water plume model deduced from a video image of the STS-29 water dump. To further improve the model, work has begun to numerically simulate the bubble formation and bursting present in a liquid stream injected into a vacuum. The technique of smoothed particle hydrodynamics was used to formulate this simulation. A status and results of the on-going effort are presented and compared to results from the literature.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Proceedings of the Eighth Annual Thermal and Fluids Analysis Workshop: Spacecraft Analysis and Design; 4.1-4.9; NASA-CP-3359
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-06-07
    Description: The first objective of this experiment is to build an experimental system in which, in analogy to a geophysical system, a compressible fluid in a spherical annulus becomes radially stratified in density through an A.C. electric field. When this density gradient is demonstrated, the system will be augmented so that the fluid can be driven by heating and rotation and tested in preparation for a microgravity experiment. This apparatus consists of a spherical capacitor filled with critical fluid in a temperature controlled environment. To make the fluid critical, the apparatus will be operated near the critical pressure, critical density, and critical temperature of the fluid. This will result in a highly compressible fluid because of the properties of the fluid near its critical point. A high voltage A.C. source applied across the capacitor will create a spherically symmetric central force because of the dielectric properties of the fluid in an electric field gradient. This central force will induce a spherically symmetric density gradient that is analogous to a geophysical fluid system. To generate such a density gradient the system must be small (approx. 1 inch diameter). This small cell will also be capable of driving the critical fluid by heating and rotation. Since a spherically symmetric density gradient can only be made in microgravity, another small cell, of the same geometry, will be built that uses incompressible fluid. The driving of the fluid by rotation and heating in these small cells will be developed. The resulting instabilities from the driving in these two systems will then be studied. The second objective is to study the pattern forming instabilities (bifurcations) resulting from the well controlled experimental conditions in the critical fluid cell. This experiment will come close to producing conditions that are geophysically similar and will be studied as the driving parameters are changed.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Third Microgravity Fluid Physics Conference; 773-778; NASA-CP-3338
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...