ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: Work continued on two projects which had been started during previous years. Both projects involve calculations of the subsonic, turbulent far wake of a two-dimensional object at a Reynolds number of 1000 (based on wake momentum thickness). This flow was used as a test case for direct comparison of various turbulence models and a direct numerical simulations (DNS) of this flow were undertaken. In the turbulence model comparison studies, for any particular model tested, a unique self-similar solution was obtained far enough downstream, regardless of inlet conditions. Furthermore, different turbulence models led to different far-wake equilibrium solutions. No turbulence model could correctly predict all features of the turbulent far wake. For example, the spreading rate and turbulent shear stresses were underpredicted by all the standard models (both two-equation and full Reynolds stress models). In cases where a more correct spreading rate was achieved, it was at the expense of the turbulent kinetic energy, which was overpredicted. In general, the Algebraic Dissipation Rate Model of Gatski and Speziale, 1992, when added to any of the standard models, improved the results dramatically. Also, full Reynolds stress closure models did a much better job at predicting the shapes of both the mean and turbulence profiles, but the spreading rate was not significantly improved over that predicted by the simpler two-equation models. There are two main conclusions from these studies: First, in a comparison such as this, it is not enough to compare just one parameter, like the spreading rate. A good prediction for one parameter does not necessarily imply good predictions for all parameters in a flow. Second, since no turbulence model could correctly predict the turbulent far wake, much of the important physics of turbulent free shear flows is apparently lost by the assumptions inherent in today's methods of turbulence modeling; turbulence models must be improved. Direct simulations of this flow were begun last year in order to provide a data base through which some of the deficiencies of the existing turbulence models could be identified. Quantities such as the pressure-strain correlation, turbulent diffusion, and the dissipation rate tensor can be easily calculated from the DNS results, whereas these quantities are nearly impossible to measure experimentally. Improvements to existing turbulence models (and development of new models) require knowledge about flow quantities such as these. During this summer, diagnostics codes were written which will calculate the parameters mentioned above, along with other single-point and multi-point statistics. The DNS calculations are still in progress at the time of this writing. When these calculations are complete, the diagnostics codes will be applied so that the results can aid turbulence modelers. In addition, the results will show whether or not there exists a universal equilibrium turbulent far wake, independent of initial conditions.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: The 1995 NASA-ODU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program; 69; NASA-CR-198210
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: There is a need for experimental measurements in complex turbulent flows that originate from very well-defined initial conditions. Testing of large-eddy simulations and other higher-order computation schemes requires inlet boundary condition data that are not normally measured. The use of fully developed upstream conditions offers a solution to this dilemma so that the upstream conditions can be adequately computed at any level of sophistication. The plane diffuser experiment by Obi et al. (1993) has received a lot of attention because it has fully-developed inlet conditions and it includes separation from a smooth wall, subsequent reattachment and redevelopment of the downstream boundary layer. The objective of this study is to provide careful qualification and detailed measurements in a recreation of the Obi experiment. The work will include extensive documentation of the flow two-dimensionality and detailed measurements required for testing of flow computations.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Center for Turbulence Research Annual Research Briefs: 1995; 117-120; NASA-CR-200667
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: In order to determine the effect of surface irregularities on local convective heat transfer, the variation in heat transfer coefficients on small (2-6 mm diam) hemispherical roughness elements on a flat plate has been studied in a wind funnel using IR techniques. Heat transfer enhancement was observed to vary over the roughness elements with the maximum heat transfer on the upstream face. This heat transfer enhancement increased strongly with roughness size and velocity when there was a laminar boundary layer on the plate. For a turbulent boundary layer, the heat transfer enhancement was relatively constant with velocity, but did increase with element size. When multiple roughness elements were studied, no influence of adjacent roughness elements on heat transfer was observed if the roughness separation was greater than approximately one roughness element radius. As roughness separation was reduced, less variation in heat transfer was observed on the downstream elements. Implications of the observed roughness enhanced heat transfer on ice accretion modeling are discussed.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/CR-95-207285 , NAS 1.26:207285 , AIAA Paper 94-0801 , Journal of Thermophysics and Heat Transfer; 9; 1; 175-180|Aerospace Sciences Meeting; Jan 10, 1994 - Jan 13, 1994; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...