ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-04-01
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-06-20
    Description: Poultry facilities are going through an evolution in design due to growing demands for cage-free eggs and egg products without unified guidelines to accommodate these transitions. The goal of this study was to help builders and egg producers assess current ventilation design within cage-free production facilities for conditions that impact hen comfort and welfare. The method of evaluation was simulation of the indoor environment of a hen house via computational fluid dynamics (CFD) modeling with individual hens modeled at a typical stocking density. This paper describes the development of a three-dimensional model of a commercial floor-raised cage-free hen house that is cross-ventilated to document current environmental conditions. A one-eighth section of the barn was modeled at full-scale using existing ventilation schemes with each bird represented by a hen-shaped, heated, solid body. A conventional top-wall inlet, side-wall exhaust (TISE) ventilation configuration was modeled for this study. The simulated ventilation rate for the hen house was approximately 3 m3/h (1.77 ft3/min) per hen resulting in 7092 m3/h (4174 ft3/min) for the 2365 birds, which falls at the higher end of the desired cold weather (0 °C) ventilation range. Contours of airflow, temperature, and pressure were generated to visualize results. Three two-dimensional planes were created at representative cross-sections to evaluate the contours inside and outside the barn. Five animal-occupied zones within each of the model planes were evaluated for practical hen comfort attributes. The simulation output suggested the TISE standard ventilation system could limit air speed to a comfortable average of 0.26 m/s (51 ft/min) and the temperature could be maintained between 18 and 24 °C on average at the bird level. Additionally, the indoor static pressure difference was very uniform averaging −25 Pascal (0.1 inches of water), which falls in the normal range for a floor-raised hen house with negative-pressure ventilation during cold weather conditions. Findings confirmed that CFD modeling can be a powerful tool for studying ventilation system performance at the bird level, particularly when individual animals are modeled, to assure a comfortable indoor environment for animal welfare in poultry facilities.
    Electronic ISSN: 2076-2615
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1988-05-01
    Description: Smoke-wire flow visualization and hot-wire anemometry have been used to study near and far wakes of two-dimensional bluff bodies. For the case of a circular cylinder at 70 〈 Re 〈 2000, a very rapid (exponential) decay of velocity fluctuations at the Kármán-vortex-street frequency is observed. Beyond this region of decay, larger-scale (lower wavenumber) structure can be seen. In the far wake (beyond one hundred diameters) a broad band of frequencies is selectively amplified and then damped, the centre of the band shifting to lower frequencies as downstream distance is increased.The far-wake structure does not depend directly on the scale or frequency of Kármán vortices shed from the cylinder; i.e. it does not result from amalgamation of shed vortices. The growth of this structure is due to hydrodynamic instability of the developing mean wake profile. Under certain conditions amalgamation can take place, but is purely incidental, and is not the driving mechanism responsible for the growth of larger-scale structure. Similar large structure is observed downstream of porous flat plates (Re ≈ 6000), which do not initially shed Kármán-type vortices into the wake.Measured prominent frequencies in the far cylinder wake are in good agreement with those estimated by two-dimensional locally parallel inviscid linear stability theory, when streamwise growth of wake width is taken into account. Finally, three-dimensionality in the far wake of a circular cylinder is briefly discussed and a mechanism for its development is suggested based on a secondary parametric instability of the subharmonic type.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-10-01
    Print ISSN: 0969-8043
    Electronic ISSN: 1872-9800
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: Work continued on two projects which had been started during previous years. Both projects involve calculations of the subsonic, turbulent far wake of a two-dimensional object at a Reynolds number of 1000 (based on wake momentum thickness). This flow was used as a test case for direct comparison of various turbulence models and a direct numerical simulations (DNS) of this flow were undertaken. In the turbulence model comparison studies, for any particular model tested, a unique self-similar solution was obtained far enough downstream, regardless of inlet conditions. Furthermore, different turbulence models led to different far-wake equilibrium solutions. No turbulence model could correctly predict all features of the turbulent far wake. For example, the spreading rate and turbulent shear stresses were underpredicted by all the standard models (both two-equation and full Reynolds stress models). In cases where a more correct spreading rate was achieved, it was at the expense of the turbulent kinetic energy, which was overpredicted. In general, the Algebraic Dissipation Rate Model of Gatski and Speziale, 1992, when added to any of the standard models, improved the results dramatically. Also, full Reynolds stress closure models did a much better job at predicting the shapes of both the mean and turbulence profiles, but the spreading rate was not significantly improved over that predicted by the simpler two-equation models. There are two main conclusions from these studies: First, in a comparison such as this, it is not enough to compare just one parameter, like the spreading rate. A good prediction for one parameter does not necessarily imply good predictions for all parameters in a flow. Second, since no turbulence model could correctly predict the turbulent far wake, much of the important physics of turbulent free shear flows is apparently lost by the assumptions inherent in today's methods of turbulence modeling; turbulence models must be improved. Direct simulations of this flow were begun last year in order to provide a data base through which some of the deficiencies of the existing turbulence models could be identified. Quantities such as the pressure-strain correlation, turbulent diffusion, and the dissipation rate tensor can be easily calculated from the DNS results, whereas these quantities are nearly impossible to measure experimentally. Improvements to existing turbulence models (and development of new models) require knowledge about flow quantities such as these. During this summer, diagnostics codes were written which will calculate the parameters mentioned above, along with other single-point and multi-point statistics. The DNS calculations are still in progress at the time of this writing. When these calculations are complete, the diagnostics codes will be applied so that the results can aid turbulence modelers. In addition, the results will show whether or not there exists a universal equilibrium turbulent far wake, independent of initial conditions.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: The 1995 NASA-ODU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program; 69; NASA-CR-198210
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-31
    Description: The results of an experimental investigation into the position and characteristics of the ground vortex are summarized. A 48-inch wind tunnel was modified to create a testing environment suitable for the ground vortex study. Flow visualization was used to document the jet-crossflow interaction and a two-component Laser Doppler Velocimeter (LDV) was used to survey the flowfield in detail. Measurements of the ground vortex characteristics and location as a function of freestream-to-jet velocity ratio, jet height, pressure gradient and upstream boundary layer thickness were obtained.
    Keywords: AERODYNAMICS
    Type: NASA, Ames Research Center, The 1987 Ground Vortex Workshop; p 39-60
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-31
    Description: Understanding of turbulent free shear flows (wakes, jets, and mixing layers) is important, not only for scientific interest, but also because of their appearance in numerous practical applications. Turbulent wakes, in particular, have recently received increased attention by researchers at NASA Langley. The turbulent wake generated by a two-dimensional airfoil has been selected as the test-case for detailed high-resolution particle image velocimetry (PIV) experiments. This same wake has also been chosen to enhance NASA's turbulence modeling efforts. Over the past year, the author has completed several wake computations, while visiting NASA through the 1993 and 1994 ASEE summer programs, and also while on sabbatical leave during the 1993-94 academic year. These calculations have included two-equation (K-omega and K-epsilon) models, algebraic stress models (ASM), full Reynolds stress closure models, and direct numerical simulations (DNS). Recently, there has been mutually beneficial collaboration of the experimental and computational efforts. In fact, these projects have been chosen for joint presentation at the NASA Turbulence Peer Review, scheduled for September 1994. DNS calculations are presently underway for a turbulent wake at Re(sub theta) = 1000 and at a Mach number of 0.20. (Theta is the momentum thickness, which remains constant in the wake of a two dimensional body.) These calculations utilize a compressible DNS code written by M. M. Rai of NASA Ames, and modified for the wake by J. Cimbala. The code employs fifth-order accurate upwind-biased finite differencing for the convective terms, fourth-order accurate central differencing for the viscous terms, and an iterative-implicit time-integration scheme. The computational domain for these calculations starts at x/theta = 10, and extends to x/theta = 610. Fully developed turbulent wake profiles, obtained from experimental data from several wake generators, are supplied at the computational inlet, along with appropriate noise. After some adjustment period, the flow downstream of the inlet develops into a fully three-dimensional turbulent wake. Of particular interest in the present study is the far wake spreading rate and the self-similar mean and turbulence profiles. At the time of this writing, grid resolution studies are underway, and a code is being written to calculate turbulence statistics from these wake calculations; the statistics will be compared to those from the ongoing PIV wake measurements, those of previous experiments, and those predicted by the various turbulence models. These calculations will lead to significant long-term benefits for the turbulence modeling effort. In particular, quantities such as the pressure-strain correlation and the dissipation rate tensor can be easily calculated from the DNS results, whereas these quantities are nearly impossible to measure experimentally. Improvements to existing turbulence models (and development of new models) require knowledge about flow quantities such as these. Present turbulence models do a very good job at prediction of the shape of the mean velocity and Reynolds stress profiles in a turbulent wake, but significantly underpredict the magnitude of the stresses and the spreading rate of the wake. Thus, the turbulent wake is an ideal flow for turbulence modeling research. By careful comparison and analysis of each term in the modeled Reynolds stress equations, the DNS data can show where deficiencies in the models exist; improvements to the models can then be attempted.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Hampton Univ., 1994 NASA-HU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program; p 70
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-08-31
    Description: In the present study, the far wake was examined numerically using an implicit, upwind, finite-volume, compressible Navier-Stokes code. The numerical grid started at 500 equivalent circular cylinder diameters in the wave, and extended to 4000 equivalent diameters. By concentrating only on the far wake, the numerical difficulties and fine mesh requirements near the wake-generating body were eliminated. At the time of this writing, results for the K-epsilon and K-omega turbulence models at low Mach number have been completed and show excellent agreement with previous incompressible results and far-wake similarity solutions. The code is presently being used to compare the performance of various other turbulence models, including Reynolds stress models and the new anisotropic two-equation turbulence models being developed at NASA Langley. By increasing our physical understanding of the deficiencies and limits of these models, it is hoped that improvements to the universality of the models can be made. Future plans include examination of two-dimensional momentumless wakes as well.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Old Dominion Univ., The 1993 NASA-ODU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program; p 80-82
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: A ground vortex, produced when a jet impinges on the ground in the presence of cross flow, is encountered by V/STOL aircraft hovering near the ground and is known to be hazardous to the aircraft. The objective of this research was to identify a ground-based technique by which both the mean size and fluctuation in size of the ground vortex could be reduced. A simple passive method was identified and examined in the laboratory. Specifically, one or two fine wire mesh screens (ground fences) bent in a horseshoe shape and located on the ground in front of the jet impingement point proved to be very effective. The ground fences work by decreasing the momentum of the upstream-traveling wall jet, effectively causing a higher freestream-to-jet velocity ratio (V(sub infinity)/V(sub j)) and thus, a ground vortex smaller in size and unsteadiness. At(V(sub infinity)/V(sub j)) = 0.15, the addition of a single ground fence resulted in a 70 percent reduction in mean size of the ground vortex. With two ground fences, the mean size decreased by about 85 percent. Fluctuations in size decreased nearly in proportion to the mean size, for both the single and double fence configurations. These results were consistent over a wide range of jet Reynolds number (10(exp 4) less than Re(sub jet) less than 10(exp 5)); further development and full-scale Reynolds number testing are required, however, to determine if this technique can be made practical for the case of actual VTOL aircraft.
    Keywords: AERODYNAMICS
    Type: NASA-CR-192997 , NAS 1.26:192997
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: The ground vortex formed by a jet impinging on the ground in the presence of a cross flow has been studied experimentally. High speed motion pictures and spectral measurements were obtained to study the unsteady features of this flowfield. A very low frequency 'puffing' action was observed. Since this unsteadiness could not be correlated with any other oscillations in the flowfield, the low frequency oscillations must come from the gross features of the ground vortex itself. Namely, jet fluid accumulates in the ground vortex until the vortex is so large that the flowfield breaks up, the ground vortex is swept away, a new smaller vortex forms, and the process repeats itself.
    Keywords: AERODYNAMICS
    Type: SAE PAPER 892281
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...