ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-07-22
    Description: The rapid dissemination of the 2009 pandemic influenza virus underscores the need for universal influenza vaccines that elicit protective immunity to diverse viral strains. Here, we show that vaccination with plasmid DNA encoding H1N1 influenza hemagglutinin (HA) and boosting with seasonal vaccine or replication-defective adenovirus 5 vector encoding HA stimulated the production of broadly neutralizing influenza antibodies. This prime/boost combination increased the neutralization of diverse H1N1 strains dating from 1934 to 2007 as compared to either component alone and conferred protection against divergent H1N1 viruses in mice and ferrets. These antibodies were directed to the conserved stem region of HA and were also elicited in nonhuman primates. Cross-neutralization of H1N1 subtypes elicited by this approach provides a basis for the development of a universal influenza vaccine for humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wei, Chih-Jen -- Boyington, Jeffrey C -- McTamney, Patrick M -- Kong, Wing-Pui -- Pearce, Melissa B -- Xu, Ling -- Andersen, Hanne -- Rao, Srinivas -- Tumpey, Terrence M -- Yang, Zhi-Yong -- Nabel, Gary J -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2010 Aug 27;329(5995):1060-4. doi: 10.1126/science.1192517. Epub 2010 Jul 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892-3005, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20647428" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Neutralizing/biosynthesis/*immunology ; Antibodies, Viral/biosynthesis/*immunology ; *Cross Protection ; Female ; Ferrets ; Genetic Vectors ; Hemagglutinin Glycoproteins, Influenza Virus/genetics/*immunology ; Humans ; Immunization, Secondary ; Influenza A Virus, H1N1 Subtype/*immunology ; Influenza A Virus, H2N2 Subtype/immunology ; Influenza A Virus, H3N2 Subtype/immunology ; Influenza A Virus, H5N1 Subtype/immunology ; Influenza Vaccines/*administration & dosage/*immunology ; Influenza, Human/immunology/prevention & control ; Macaca mulatta ; Male ; Mice ; Mice, Inbred BALB C ; Mutant Proteins/immunology ; Orthomyxoviridae Infections/immunology/prevention & control ; Plasmids ; Vaccination ; Vaccines, DNA/administration & dosage/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-01-22
    Description: Vascular patterning is critical for organ function. In the eye, there is simultaneous regression of embryonic hyaloid vasculature (important to clear the optical path) and formation of the retinal vasculature (important for the high metabolic demands of retinal neurons). These events occur postnatally in the mouse. Here we have identified a light-response pathway that regulates both processes. We show that when mice are mutated in the gene (Opn4) for the atypical opsin melanopsin, or are dark-reared from late gestation, the hyaloid vessels are persistent at 8 days post-partum and the retinal vasculature overgrows. We provide evidence that these vascular anomalies are explained by a light-response pathway that suppresses retinal neuron number, limits hypoxia and, as a consequence, holds local expression of vascular endothelial growth factor (VEGFA) in check. We also show that the light response for this pathway occurs in late gestation at about embryonic day 16 and requires the photopigment in the fetus and not the mother. Measurements show that visceral cavity photon flux is probably sufficient to activate melanopsin-expressing retinal ganglion cells in the mouse fetus. These data thus show that light--the stimulus for function of the mature eye--is also critical in preparing the eye for vision by regulating retinal neuron number and initiating a series of events that ultimately pattern the ocular blood vessels.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3746810/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3746810/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rao, Sujata -- Chun, Christina -- Fan, Jieqing -- Kofron, J Matthew -- Yang, Michael B -- Hegde, Rashmi S -- Ferrara, Napoleone -- Copenhagen, David R -- Lang, Richard A -- AR-47363/AR/NIAMS NIH HHS/ -- R01 EY001869/EY/NEI NIH HHS/ -- R01 EY014648/EY/NEI NIH HHS/ -- R01 EY021636/EY/NEI NIH HHS/ -- R01 EY022917/EY/NEI NIH HHS/ -- R01 EY023179/EY/NEI NIH HHS/ -- England -- Nature. 2013 Feb 14;494(7436):243-6. doi: 10.1038/nature11823. Epub 2013 Jan 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23334418" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Count ; Cell Hypoxia/radiation effects ; Eye/*blood supply/*growth & development/metabolism/radiation effects ; Female ; Fetus/cytology/embryology/metabolism/*radiation effects ; *Light ; Light Signal Transduction/*radiation effects ; Mice ; Mice, Inbred C57BL ; Neovascularization, Pathologic ; Neovascularization, Physiologic/radiation effects ; Photons ; Retinal Ganglion Cells/cytology/metabolism/radiation effects ; Retinal Neurons/cytology/metabolism/*radiation effects ; Rod Opsins/deficiency/genetics/*metabolism ; Vascular Endothelial Growth Factor A/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-08-15
    Description: To protect against human immunodeficiency virus (HIV-1) infection, broadly neutralizing antibodies (bnAbs) must be active at the portals of viral entry in the gastrointestinal or cervicovaginal tracts. The localization and persistence of antibodies at these sites is influenced by the neonatal Fc receptor (FcRn), whose role in protecting against infection in vivo has not been defined. Here, we show that a bnAb with enhanced FcRn binding has increased gut mucosal tissue localization, which improves protection against lentiviral infection in non-human primates. A bnAb directed to the CD4-binding site of the HIV-1 envelope (Env) protein (denoted VRC01) was modified by site-directed mutagenesis to increase its binding affinity for FcRn. This enhanced FcRn-binding mutant bnAb, denoted VRC01-LS, displayed increased transcytosis across human FcRn-expressing cellular monolayers in vitro while retaining FcgammaRIIIa binding and function, including antibody-dependent cell-mediated cytotoxicity (ADCC) activity, at levels similar to VRC01 (the wild type). VRC01-LS had a threefold longer serum half-life than VRC01 in non-human primates and persisted in the rectal mucosa even when it was no longer detectable in the serum. Notably, VRC01-LS mediated protection superior to that afforded by VRC01 against intrarectal infection with simian-human immunodeficiency virus (SHIV). These findings suggest that modification of FcRn binding provides a mechanism not only to increase serum half-life but also to enhance mucosal localization that confers immune protection. Mutations that enhance FcRn function could therefore increase the potency and durability of passive immunization strategies to prevent HIV-1 infection.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4433741/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4433741/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ko, Sung-Youl -- Pegu, Amarendra -- Rudicell, Rebecca S -- Yang, Zhi-yong -- Joyce, M Gordon -- Chen, Xuejun -- Wang, Keyun -- Bao, Saran -- Kraemer, Thomas D -- Rath, Timo -- Zeng, Ming -- Schmidt, Stephen D -- Todd, John-Paul -- Penzak, Scott R -- Saunders, Kevin O -- Nason, Martha C -- Haase, Ashley T -- Rao, Srinivas S -- Blumberg, Richard S -- Mascola, John R -- Nabel, Gary J -- DK0034854/DK/NIDDK NIH HHS/ -- DK044319/DK/NIDDK NIH HHS/ -- DK051362/DK/NIDDK NIH HHS/ -- DK053056/DK/NIDDK NIH HHS/ -- DK088199/DK/NIDDK NIH HHS/ -- R01 DK053056/DK/NIDDK NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2014 Oct 30;514(7524):642-5. doi: 10.1038/nature13612. Epub 2014 Aug 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, MSC-3005, 40 Convent Drive, Bethesda, Maryland 20892-3005, USA. ; 1] Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, MSC-3005, 40 Convent Drive, Bethesda, Maryland 20892-3005, USA [2] Sanofi, 640 Memorial Drive, Cambridge, Massachusetts 02139, USA (R.S.R., Z.-Y.Y. and G.J.N.); Center for Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75235-8505, USA (M.Z.); University of North Texas System College of Pharmacy, 3500 Camp Bowie Boulevard, RES-340J, Fort Worth, Texas 76107, USA (S.R.P.). ; Division of Gastroenterology, Department of Medicine, Brigham &Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115, USA. ; 1] Department of Microbiology, Medical School, University of Minnesota, 420 Delaware Street South East, Minneapolis, Minnesota 55455, USA [2] Sanofi, 640 Memorial Drive, Cambridge, Massachusetts 02139, USA (R.S.R., Z.-Y.Y. and G.J.N.); Center for Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75235-8505, USA (M.Z.); University of North Texas System College of Pharmacy, 3500 Camp Bowie Boulevard, RES-340J, Fort Worth, Texas 76107, USA (S.R.P.). ; 1] Clinical Pharmacokinetics Laboratory, Pharmacy Department, Clinical Center, National Institutes of Health, Building 10, 10 Center Drive, Bethesda, Maryland 20814, USA [2] Sanofi, 640 Memorial Drive, Cambridge, Massachusetts 02139, USA (R.S.R., Z.-Y.Y. and G.J.N.); Center for Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75235-8505, USA (M.Z.); University of North Texas System College of Pharmacy, 3500 Camp Bowie Boulevard, RES-340J, Fort Worth, Texas 76107, USA (S.R.P.). ; Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 6700A Rockledge Drive, Room 5235, Bethesda, Maryland 20892, USA. ; Department of Microbiology, Medical School, University of Minnesota, 420 Delaware Street South East, Minneapolis, Minnesota 55455, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119033" target="_blank"〉PubMed〈/a〉
    Keywords: Administration, Rectal ; Animals ; Antibodies, Neutralizing/analysis/blood/genetics/*immunology ; Antibodies, Viral/analysis/blood/genetics/*immunology ; Antibody Affinity/genetics/immunology ; Antibody-Dependent Cell Cytotoxicity/immunology ; Antigens, CD4/metabolism ; Binding Sites/genetics ; Female ; HIV/chemistry/immunology ; HIV Antibodies/analysis/blood/genetics/immunology ; HIV Envelope Protein gp160/chemistry/immunology ; HIV Infections/*immunology/*prevention & control ; Half-Life ; Histocompatibility Antigens Class I/*immunology ; Immunity, Mucosal/immunology ; Immunization, Passive ; Intestinal Mucosa/immunology ; Macaca mulatta ; Male ; Mice ; Mutagenesis, Site-Directed ; Receptors, Fc/*immunology ; Receptors, IgG/immunology/metabolism ; Rectum/immunology ; Simian Acquired Immunodeficiency Syndrome/*immunology/*prevention & control ; Simian Immunodeficiency Virus/immunology ; Transcytosis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-12-20
    Description: A major challenge for the development of a highly effective AIDS vaccine is the identification of mechanisms of protective immunity. To address this question, we used a nonhuman primate challenge model with simian immunodeficiency virus (SIV). We show that antibodies to the SIV envelope are necessary and sufficient to prevent infection. Moreover, sequencing of viruses from breakthrough infections revealed selective pressure against neutralization-sensitive viruses; we identified a two-amino-acid signature that alters antigenicity and confers neutralization resistance. A similar signature confers resistance of human immunodeficiency virus (HIV)-1 to neutralization by monoclonal antibodies against variable regions 1 and 2 (V1V2), suggesting that SIV and HIV share a fundamental mechanism of immune escape from vaccine-elicited or naturally elicited antibodies. These analyses provide insight into the limited efficacy seen in HIV vaccine trials.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3946913/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3946913/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roederer, Mario -- Keele, Brandon F -- Schmidt, Stephen D -- Mason, Rosemarie D -- Welles, Hugh C -- Fischer, Will -- Labranche, Celia -- Foulds, Kathryn E -- Louder, Mark K -- Yang, Zhi-Yong -- Todd, John-Paul M -- Buzby, Adam P -- Mach, Linh V -- Shen, Ling -- Seaton, Kelly E -- Ward, Brandy M -- Bailer, Robert T -- Gottardo, Raphael -- Gu, Wenjuan -- Ferrari, Guido -- Alam, S Munir -- Denny, Thomas N -- Montefiori, David C -- Tomaras, Georgia D -- Korber, Bette T -- Nason, Martha C -- Seder, Robert A -- Koup, Richard A -- Letvin, Norman L -- Rao, Srinivas S -- Nabel, Gary J -- Mascola, John R -- AI100645/AI/NIAID NIH HHS/ -- HHSN261200800001E/PHS HHS/ -- HHSN27201100016C/PHS HHS/ -- UM1 AI100645/AI/NIAID NIH HHS/ -- Z99 AI999999/Intramural NIH HHS/ -- ZIA AI005019-12/Intramural NIH HHS/ -- England -- Nature. 2014 Jan 23;505(7484):502-8. doi: 10.1038/nature12893. Epub 2013 Dec 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, NIAID, NIH, Bethesda, Maryland 20892, USA. ; SAIC-Frederick, Frederick National Laboratory, NIH, Frederick, Maryland 21702, USA. ; 1] Vaccine Research Center, NIAID, NIH, Bethesda, Maryland 20892, USA [2] George Washington University, Washington DC 20052, USA. ; Los Alamos National Laboratories, Los Alamos, New Mexico 87545, USA. ; Department of Surgery, Duke University, Durham, North Carolina 27710, USA. ; 1] Vaccine Research Center, NIAID, NIH, Bethesda, Maryland 20892, USA [2] Sanofi-Pasteur, Cambridge, Massachusetts 02139, USA. ; Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA. ; Human Vaccine Institute, Duke University, Durham, North Carolina 27710, USA. ; Fred Hutchison Cancer Research Center, Seattle, Washington 98109, USA. ; Biostatistics Research Branch, NIAID, NIH, Bethesda, Maryland 20892, USA. ; 1] Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24352234" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/*immunology ; Amino Acid Sequence ; Animals ; Antibodies, Neutralizing/immunology ; Disease Susceptibility/immunology ; Female ; Founder Effect ; HIV Antibodies/immunology ; HIV Infections/immunology/*prevention & control/*virology ; HIV-1/chemistry/*immunology ; Humans ; Immune Evasion/immunology ; Macaca mulatta ; Male ; Molecular Sequence Data ; Phylogeny ; Risk ; SAIDS Vaccines/*immunology ; Simian Acquired Immunodeficiency Syndrome/immunology/prevention & ; control/virology ; Simian Immunodeficiency Virus/chemistry/genetics/*immunology/physiology ; env Gene Products, Human Immunodeficiency Virus/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-05-24
    Description: Influenza viruses pose a significant threat to the public and are a burden on global health systems. Each year, influenza vaccines must be rapidly produced to match circulating viruses, a process constrained by dated technology and vulnerable to unexpected strains emerging from humans and animal reservoirs. Here we use knowledge of protein structure to design self-assembling nanoparticles that elicit broader and more potent immunity than traditional influenza vaccines. The viral haemagglutinin was genetically fused to ferritin, a protein that naturally forms nanoparticles composed of 24 identical polypeptides. Haemagglutinin was inserted at the interface of adjacent subunits so that it spontaneously assembled and generated eight trimeric viral spikes on its surface. Immunization with this influenza nanoparticle vaccine elicited haemagglutination inhibition antibody titres more than tenfold higher than those from the licensed inactivated vaccine. Furthermore, it elicited neutralizing antibodies to two highly conserved vulnerable haemagglutinin structures that are targets of universal vaccines: the stem and the receptor binding site on the head. Antibodies elicited by a 1999 haemagglutinin-nanoparticle vaccine neutralized H1N1 viruses from 1934 to 2007 and protected ferrets from an unmatched 2007 H1N1 virus challenge. This structure-based, self-assembling synthetic nanoparticle vaccine improves the potency and breadth of influenza virus immunity, and it provides a foundation for building broader vaccine protection against emerging influenza viruses and other pathogens.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kanekiyo, Masaru -- Wei, Chih-Jen -- Yassine, Hadi M -- McTamney, Patrick M -- Boyington, Jeffrey C -- Whittle, James R R -- Rao, Srinivas S -- Kong, Wing-Pui -- Wang, Lingshu -- Nabel, Gary J -- Intramural NIH HHS/ -- England -- Nature. 2013 Jul 4;499(7456):102-6. doi: 10.1038/nature12202. Epub 2013 May 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23698367" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Neutralizing/*immunology ; Antibodies, Viral/*immunology ; Binding Sites ; Cross Reactions/immunology ; Female ; Ferrets/immunology/virology ; Ferritins/chemistry ; Hemagglutination Inhibition Tests ; Hemagglutinin Glycoproteins, Influenza Virus/immunology ; Influenza A Virus, H1N1 Subtype/classification/*immunology ; Influenza Vaccines/*chemistry/*immunology ; Male ; Mice ; Mice, Inbred BALB C ; Nanoparticles/*chemistry ; Orthomyxoviridae Infections/immunology/prevention & control/virology ; Vaccines, Inactivated/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...