ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2009-02-13
    Beschreibung: Epigenetic mechanisms that maintain neurogenesis throughout adult life remain poorly understood. Trithorax group (trxG) and Polycomb group (PcG) gene products are part of an evolutionarily conserved chromatin remodelling system that activate or silence gene expression, respectively. Although PcG member Bmi1 has been shown to be required for postnatal neural stem cell self-renewal, the role of trxG genes remains unknown. Here we show that the trxG member Mll1 (mixed-lineage leukaemia 1) is required for neurogenesis in the mouse postnatal brain. Mll1-deficient subventricular zone neural stem cells survive, proliferate and efficiently differentiate into glial lineages; however, neuronal differentiation is severely impaired. In Mll1-deficient cells, early proneural Mash1 (also known as Ascl1) and gliogenic Olig2 expression are preserved, but Dlx2, a key downstream regulator of subventricular zone neurogenesis, is not expressed. Overexpression of Dlx2 can rescue neurogenesis in Mll1-deficient cells. Chromatin immunoprecipitation demonstrates that Dlx2 is a direct target of MLL in subventricular zone cells. In differentiating wild-type subventricular zone cells, Mash1, Olig2 and Dlx2 loci have high levels of histone 3 trimethylated at lysine 4 (H3K4me3), consistent with their transcription. In contrast, in Mll1-deficient subventricular zone cells, chromatin at Dlx2 is bivalently marked by both H3K4me3 and histone 3 trimethylated at lysine 27 (H3K27me3), and the Dlx2 gene fails to properly activate. These data support a model in which Mll1 is required to resolve key silenced bivalent loci in postnatal neural precursors to the actively transcribed state for the induction of neurogenesis, but not for gliogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3800116/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3800116/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lim, Daniel A -- Huang, Yin-Cheng -- Swigut, Tomek -- Mirick, Anika L -- Garcia-Verdugo, Jose Manuel -- Wysocka, Joanna -- Ernst, Patricia -- Alvarez-Buylla, Arturo -- 5R37-NS028478/NS/NINDS NIH HHS/ -- R37 NS028478/NS/NINDS NIH HHS/ -- England -- Nature. 2009 Mar 26;458(7237):529-33. doi: 10.1038/nature07726. Epub 2009 Feb 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Street M779, San Francisco, California 94143, USA. limd@neurosurg.ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19212323" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Animals ; Animals, Newborn ; Basic Helix-Loop-Helix Transcription Factors/metabolism ; Cell Differentiation ; Cell Lineage ; Cell Proliferation ; Cell Survival ; Cells, Cultured ; Chromatin/*metabolism ; *Chromatin Assembly and Disassembly ; Chromatin Immunoprecipitation ; Histone-Lysine N-Methyltransferase ; Histones/metabolism ; Homeodomain Proteins/chemistry/genetics/metabolism ; Methylation ; Mice ; Myeloid-Lymphoid Leukemia Protein/deficiency/genetics/*metabolism ; Nerve Tissue Proteins/metabolism ; *Neurogenesis ; Neuroglia/cytology/metabolism ; Neurons/*cytology/metabolism ; Olfactory Bulb/cytology/metabolism ; Stem Cells/*cytology/metabolism ; Transcription Factors/chemistry/genetics/metabolism
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2015-04-22
    Beschreibung: Endogenous retroviruses (ERVs) are remnants of ancient retroviral infections, and comprise nearly 8% of the human genome. The most recently acquired human ERV is HERVK(HML-2), which repeatedly infected the primate lineage both before and after the divergence of the human and chimpanzee common ancestor. Unlike most other human ERVs, HERVK retained multiple copies of intact open reading frames encoding retroviral proteins. However, HERVK is transcriptionally silenced by the host, with the exception of in certain pathological contexts such as germ-cell tumours, melanoma or human immunodeficiency virus (HIV) infection. Here we demonstrate that DNA hypomethylation at long terminal repeat elements representing the most recent genomic integrations, together with transactivation by OCT4 (also known as POU5F1), synergistically facilitate HERVK expression. Consequently, HERVK is transcribed during normal human embryogenesis, beginning with embryonic genome activation at the eight-cell stage, continuing through the emergence of epiblast cells in preimplantation blastocysts, and ceasing during human embryonic stem cell derivation from blastocyst outgrowths. Remarkably, we detected HERVK viral-like particles and Gag proteins in human blastocysts, indicating that early human development proceeds in the presence of retroviral products. We further show that overexpression of one such product, the HERVK accessory protein Rec, in a pluripotent cell line is sufficient to increase IFITM1 levels on the cell surface and inhibit viral infection, suggesting at least one mechanism through which HERVK can induce viral restriction pathways in early embryonic cells. Moreover, Rec directly binds a subset of cellular RNAs and modulates their ribosome occupancy, indicating that complex interactions between retroviral proteins and host factors can fine-tune pathways of early human development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4503379/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4503379/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grow, Edward J -- Flynn, Ryan A -- Chavez, Shawn L -- Bayless, Nicholas L -- Wossidlo, Mark -- Wesche, Daniel J -- Martin, Lance -- Ware, Carol B -- Blish, Catherine A -- Chang, Howard Y -- Pera, Renee A Reijo -- Wysocka, Joanna -- 1F30CA189514-01/CA/NCI NIH HHS/ -- 1S10RR02678001/RR/NCRR NIH HHS/ -- 1S10RR02933801/RR/NCRR NIH HHS/ -- DP2 AI112193/AI/NIAID NIH HHS/ -- DP2AI11219301/AI/NIAID NIH HHS/ -- F30 CA189514/CA/NCI NIH HHS/ -- P01GM099130/GM/NIGMS NIH HHS/ -- P50-HG007735/HG/NHGRI NIH HHS/ -- R01 GM112720/GM/NIGMS NIH HHS/ -- T32 HG000044/HG/NHGRI NIH HHS/ -- U01 HL100397/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jun 11;522(7555):221-5. doi: 10.1038/nature14308. Epub 2015 Apr 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA. ; Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA. ; 1] Institute for Stem Cell Biology &Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA [2] Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA [3] Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health &Science University, Beaverton, Oregon 97006, USA. ; Stanford Immunology, Stanford University School of Medicine, Stanford, California 94305, USA. ; 1] Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA [2] Institute for Stem Cell Biology &Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA [3] Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA. ; Institute for Stem Cell Biology &Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA. ; Department of Comparative Medicine, University of Washington, Seattle, Washington 98195-8056, USA. ; Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA. ; 1] Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA [2] Institute for Stem Cell Biology &Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA [3] Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA [4] Department of Cell Biology and Neurosciences, Montana State University, Bozeman, Montana 59717, USA. ; 1] Institute for Stem Cell Biology &Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA [2] Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA [3] Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25896322" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Antigens, Differentiation/metabolism ; Blastocyst/cytology/metabolism/*virology ; Cell Line ; DNA Methylation ; Endogenous Retroviruses/genetics/*metabolism ; Female ; Gene Products, gag/metabolism ; Humans ; Male ; Octamer Transcription Factor-3/metabolism ; Open Reading Frames/genetics ; Pluripotent Stem Cells/cytology/metabolism/*virology ; RNA, Messenger/genetics/metabolism ; Ribosomes/genetics/metabolism ; Terminal Repeat Sequences/genetics ; Transcription, Genetic/genetics ; Transcriptional Activation ; Viral Envelope Proteins/genetics/metabolism ; *Virus Activation
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2011-03-23
    Beschreibung: The genome is extensively transcribed into long intergenic noncoding RNAs (lincRNAs), many of which are implicated in gene silencing. Potential roles of lincRNAs in gene activation are much less understood. Development and homeostasis require coordinate regulation of neighbouring genes through a process termed locus control. Some locus control elements and enhancers transcribe lincRNAs, hinting at possible roles in long-range control. In vertebrates, 39 Hox genes, encoding homeodomain transcription factors critical for positional identity, are clustered in four chromosomal loci; the Hox genes are expressed in nested anterior-posterior and proximal-distal patterns colinear with their genomic position from 3' to 5'of the cluster. Here we identify HOTTIP, a lincRNA transcribed from the 5' tip of the HOXA locus that coordinates the activation of several 5' HOXA genes in vivo. Chromosomal looping brings HOTTIP into close proximity to its target genes. HOTTIP RNA binds the adaptor protein WDR5 directly and targets WDR5/MLL complexes across HOXA, driving histone H3 lysine 4 trimethylation and gene transcription. Induced proximity is necessary and sufficient for HOTTIP RNA activation of its target genes. Thus, by serving as key intermediates that transmit information from higher order chromosomal looping into chromatin modifications, lincRNAs may organize chromatin domains to coordinate long-range gene activation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3670758/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3670758/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Kevin C -- Yang, Yul W -- Liu, Bo -- Sanyal, Amartya -- Corces-Zimmerman, Ryan -- Chen, Yong -- Lajoie, Bryan R -- Protacio, Angeline -- Flynn, Ryan A -- Gupta, Rajnish A -- Wysocka, Joanna -- Lei, Ming -- Dekker, Job -- Helms, Jill A -- Chang, Howard Y -- HG003143/HG/NHGRI NIH HHS/ -- R01 HG003143/HG/NHGRI NIH HHS/ -- R01 HG003143-06/HG/NHGRI NIH HHS/ -- R01 HG003143-06S1/HG/NHGRI NIH HHS/ -- R01 HG003143-06S2/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Apr 7;472(7341):120-4. doi: 10.1038/nature09819. Epub 2011 Mar 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21423168" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Animals ; Cell Line ; Cells, Cultured ; Chromatin/*genetics/metabolism ; DNA, Intergenic/genetics ; Embryo, Mammalian/metabolism ; Fibroblasts/metabolism ; Gene Expression Regulation, Developmental/*genetics ; Gene Knockdown Techniques ; Genes, Homeobox/*genetics ; Histone-Lysine N-Methyltransferase/metabolism ; Histones/chemistry/metabolism ; Humans ; Lysine/metabolism ; Methylation ; Mice ; Molecular Sequence Data ; Multigene Family/genetics ; Organ Specificity ; RNA, Untranslated/*genetics ; Transcription, Genetic
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2014-08-15
    Beschreibung: CHARGE syndrome is a multiple anomaly disorder in which patients present with a variety of phenotypes, including ocular coloboma, heart defects, choanal atresia, retarded growth and development, genitourinary hypoplasia and ear abnormalities. Despite 70-90% of CHARGE syndrome cases resulting from mutations in the gene CHD7, which encodes an ATP-dependent chromatin remodeller, the pathways underlying the diverse phenotypes remain poorly understood. Surprisingly, our studies of a knock-in mutant mouse strain that expresses a stabilized and transcriptionally dead variant of the tumour-suppressor protein p53 (p53(25,26,53,54)), along with a wild-type allele of p53 (also known as Trp53), revealed late-gestational embryonic lethality associated with a host of phenotypes that are characteristic of CHARGE syndrome, including coloboma, inner and outer ear malformations, heart outflow tract defects and craniofacial defects. We found that the p53(25,26,53,54) mutant protein stabilized and hyperactivated wild-type p53, which then inappropriately induced its target genes and triggered cell-cycle arrest or apoptosis during development. Importantly, these phenotypes were only observed with a wild-type p53 allele, as p53(25,26,53,54)(/-) embryos were fully viable. Furthermore, we found that CHD7 can bind to the p53 promoter, thereby negatively regulating p53 expression, and that CHD7 loss in mouse neural crest cells or samples from patients with CHARGE syndrome results in p53 activation. Strikingly, we found that p53 heterozygosity partially rescued the phenotypes in Chd7-null mouse embryos, demonstrating that p53 contributes to the phenotypes that result from CHD7 loss. Thus, inappropriate p53 activation during development can promote CHARGE phenotypes, supporting the idea that p53 has a critical role in developmental syndromes and providing important insight into the mechanisms underlying CHARGE syndrome.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4192026/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4192026/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Van Nostrand, Jeanine L -- Brady, Colleen A -- Jung, Heiyoun -- Fuentes, Daniel R -- Kozak, Margaret M -- Johnson, Thomas M -- Lin, Chieh-Yu -- Lin, Chien-Jung -- Swiderski, Donald L -- Vogel, Hannes -- Bernstein, Jonathan A -- Attie-Bitach, Tania -- Chang, Ching-Pin -- Wysocka, Joanna -- Martin, Donna M -- Attardi, Laura D -- 1F31CA167917-01/CA/NCI NIH HHS/ -- F31 CA167917/CA/NCI NIH HHS/ -- R01 CA140875/CA/NCI NIH HHS/ -- R01 DC009410/DC/NIDCD NIH HHS/ -- R01 GM095555/GM/NIGMS NIH HHS/ -- R01 HL118087/HL/NHLBI NIH HHS/ -- R01HL121197/HL/NHLBI NIH HHS/ -- England -- Nature. 2014 Oct 9;514(7521):228-32. doi: 10.1038/nature13585. Epub 2014 Aug 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University School of Medicine, Stanford, California 94305, USA. ; 1] Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University School of Medicine, Stanford, California 94305, USA [2] Cardiovascular Research Center and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA (C.A.B.); Department of Medicine, University of Central Florida, Orlando, Florida 32827, USA (M.M.K.); Department of Emergency Medicine, Oregon Health and Science University, Portland, Oregon 97239, USA (T.M.J.). ; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA. ; Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA. ; Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA. ; Department of Otolaryngology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, USA. ; Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA. ; 1] Departement de Genetique, Hopital Necker-Enfants Malades, APHP, 75015 Paris, France [2] Unite INSERM U1163, Universite Paris Descartes-Sorbonne Paris Cite, Institut Imagine, 75015 Paris, France. ; Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA. ; 1] Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA [2] Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA. ; 1] Department of Pediatrics, The University of Michigan Medical School, Ann Arbor, Michigan 48109, USA [2] Department of Human Genetics, The University of Michigan Medical School, Ann Arbor, Michigan 48109, USA. ; 1] Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University School of Medicine, Stanford, California 94305, USA [2] Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119037" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Abnormalities, Multiple/genetics/*metabolism ; Alleles ; Animals ; Apoptosis/genetics ; CHARGE Syndrome/*genetics/*metabolism ; Cell Cycle Checkpoints/genetics ; Craniofacial Abnormalities/genetics/metabolism ; DNA-Binding Proteins/deficiency/genetics/metabolism ; Ear/abnormalities ; Embryo, Mammalian/abnormalities/metabolism ; Female ; Fibroblasts ; Gene Deletion ; Heterozygote ; Humans ; Male ; Mice ; Mutant Proteins/metabolism ; *Phenotype ; Promoter Regions, Genetic/genetics ; Tumor Suppressor Protein p53/*genetics/*metabolism
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...