ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Female  (14)
  • American Association for the Advancement of Science (AAAS)  (14)
  • American Physical Society (APS)
  • 1995-1999  (14)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (14)
  • American Physical Society (APS)
Years
Year
  • 1
    Publication Date: 1996-03-08
    Description: Friedreich's ataxia (FRDA) is an autosomal recessive, degenerative disease that involves the central and peripheral nervous systems and the heart. A gene, X25, was identified in the critical region for the FRDA locus on chromosome 9q13. This gene encodes a 210-amino acid protein, frataxin, that has homologs in distant species such as Caenorhabditis elegans and yeast. A few FRDA patients were found to have point mutations in X25, but the majority were homozygous for an unstable GAA trinucleotide expansion in the first X25 intron.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Campuzano, V -- Montermini, L -- Molto, M D -- Pianese, L -- Cossee, M -- Cavalcanti, F -- Monros, E -- Rodius, F -- Duclos, F -- Monticelli, A -- Zara, F -- Canizares, J -- Koutnikova, H -- Bidichandani, S I -- Gellera, C -- Brice, A -- Trouillas, P -- De Michele, G -- Filla, A -- De Frutos, R -- Palau, F -- Patel, P I -- Di Donato, S -- Mandel, J L -- Cocozza, S -- Koenig, M -- Pandolfo, M -- 722/Telethon/Italy -- NS34192/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1996 Mar 8;271(5254):1423-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department de Genetica, University of Valencia, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8596916" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Base Sequence ; Chromosomes, Human, Pair 9/*genetics ; DNA Primers ; Female ; Friedreich Ataxia/*genetics ; Genes, Recessive ; Heterozygote ; Humans ; *Introns ; *Iron-Binding Proteins ; Male ; Molecular Sequence Data ; Pedigree ; Point Mutation ; Polymerase Chain Reaction ; Proteins/chemistry/*genetics ; Sequence Alignment ; *Trinucleotide Repeats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1998-04-16
    Description: FADD (also known as Mort-1) is a signal transducer downstream of cell death receptor CD95 (also called Fas). CD95, tumor necrosis factor receptor type 1 (TNFR-1), and death receptor 3 (DR3) did not induce apoptosis in FADD-deficient embryonic fibroblasts, whereas DR4, oncogenes E1A and c-myc, and chemotherapeutic agent adriamycin did. Mice with a deletion in the FADD gene did not survive beyond day 11.5 of embryogenesis; these mice showed signs of cardiac failure and abdominal hemorrhage. Chimeric embryos showing a high contribution of FADD null mutant cells to the heart reproduce the phenotype of FADD-deficient mutants. Thus, not only death receptors, but also receptors that couple to developmental programs, may use FADD for signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yeh, W C -- de la Pompa, J L -- McCurrach, M E -- Shu, H B -- Elia, A J -- Shahinian, A -- Ng, M -- Wakeham, A -- Khoo, W -- Mitchell, K -- El-Deiry, W S -- Lowe, S W -- Goeddel, D V -- Mak, T W -- CA13106/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1998 Mar 20;279(5358):1954-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Amgen Institute, University of Toronto, Toronto, Ontario, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9506948" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Animals ; Antigens, CD95/genetics/physiology ; *Apoptosis ; Carrier Proteins/genetics/*physiology ; Cell Transformation, Neoplastic ; Cells, Cultured ; Doxorubicin/pharmacology ; *Embryonic and Fetal Development ; Endothelium, Vascular/embryology ; Fas-Associated Death Domain Protein ; Female ; Gene Expression ; Gene Targeting ; Heart/*embryology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Mutation ; Oncogenes ; Receptors, Tumor Necrosis Factor/genetics/physiology ; Signal Transduction ; Tumor Necrosis Factor-alpha/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1998-06-20
    Description: An efficient system for genetic modification and large-scale cloning of cattle is of importance for agriculture, biotechnology, and human medicine. Here, actively dividing fetal fibroblasts were genetically modified with a marker gene, a clonal line was selected, and the cells were fused to enucleated mature oocytes. Out of 28 embryos transferred to 11 recipient cows, three healthy, identical, transgenic calves were generated. Furthermore, the life-span of near senescent fibroblasts could be extended by nuclear transfer, as indicated by population doublings in fibroblast lines derived from a 40-day-old fetal clone. With the ability to extend the life-span of these primary cultured cells, this system would be useful for inducing complex genetic modifications in cattle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cibelli, J B -- Stice, S L -- Golueke, P J -- Kane, J J -- Jerry, J -- Blackwell, C -- Ponce de Leon, F A -- Robl, J M -- New York, N.Y. -- Science. 1998 May 22;280(5367):1256-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9596577" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Animals, Genetically Modified ; Blastocyst ; Cattle/embryology/*genetics ; Cell Aging ; Cell Division ; Cell Nucleus/genetics ; Cells, Cultured ; Clone Cells ; *Cloning, Organism ; Embryo Transfer ; Female ; Fetus/cytology ; Fibroblasts/*cytology ; G1 Phase ; Male ; Nuclear Transfer Techniques ; Oocytes/cytology ; Transfection ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1999-09-08
    Description: Studies on pluripotent hematopoietic stem cells (HSCs) have been hindered by lack of a positive marker, comparable to the CD34 marker of hematopoietic progenitor cells (HPCs). In human postnatal hematopoietic tissues, 0.1 to 0.5% of CD34(+) cells expressed vascular endothelial growth factor receptor 2 (VEGFR2, also known as KDR). Pluripotent HSCs were restricted to the CD34+KDR+ cell fraction. Conversely, lineage-committed HPCs were in the CD34+KDR- subset. On the basis of limiting dilution analysis, the HSC frequency in the CD34+KDR+ fraction was 20 percent in bone marrow (BM) by mouse xenograft assay and 25 to 42 percent in BM, peripheral blood, and cord blood by 12-week long-term culture (LTC) assay. The latter values rose to 53 to 63 percent in LTC supplemented with VEGF and to greater than 95 percent for the cell subfraction resistant to growth factor starvation. Thus, KDR is a positive functional marker defining stem cells and distinguishing them from progenitors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ziegler, B L -- Valtieri, M -- Porada, G A -- De Maria, R -- Muller, R -- Masella, B -- Gabbianelli, M -- Casella, I -- Pelosi, E -- Bock, T -- Zanjani, E D -- Peschle, C -- New York, N.Y. -- Science. 1999 Sep 3;285(5433):1553-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Hematology and Oncology, University of Tubingen, Otfried-Muller-Strasse 10, D-72076 Tubingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10477517" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD34/*analysis ; Bone Marrow Cells/cytology ; Cell Lineage ; Cell Separation ; Cells, Cultured ; Endothelial Growth Factors/pharmacology ; Female ; Fetal Blood/cytology ; Fetus ; Flow Cytometry ; *Hematopoiesis ; Hematopoietic Stem Cell Transplantation ; Hematopoietic Stem Cells/chemistry/*cytology/drug effects/physiology ; Humans ; Lymphokines/pharmacology ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Phenotype ; Pregnancy ; Receptor Protein-Tyrosine Kinases/*analysis/physiology ; Receptors, Growth Factor/*analysis/physiology ; Receptors, Vascular Endothelial Growth Factor ; Sheep ; Transplantation, Heterologous ; Vascular Endothelial Growth Factor A ; Vascular Endothelial Growth Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1997-07-25
    Description: Mutations in the gene encoding copper/zinc superoxide dismutase enzyme produce an animal model of familial amyotrophic lateral sclerosis (FALS), a fatal disorder characterized by paralysis. Overexpression of the proto-oncogene bcl-2 delayed onset of motor neuron disease and prolonged survival in transgenic mice expressing the FALS-linked mutation in which glycine is substituted by alanine at position 93. It did not, however, alter the duration of the disease. Overexpression of bcl-2 also attenuated the magnitude of spinal cord motor neuron degeneration in the FALS-transgenic mice.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kostic, V -- Jackson-Lewis, V -- de Bilbao, F -- Dubois-Dauphin, M -- Przedborski, S -- NS01724/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1997 Jul 25;277(5325):559-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, Columbia University, 650 West 168 Street, BB-307, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9228005" target="_blank"〉PubMed〈/a〉
    Keywords: Amyotrophic Lateral Sclerosis/genetics/mortality/pathology/*therapy ; Animals ; Disease Models, Animal ; Female ; *Gene Expression ; *Genes, bcl-2 ; *Genetic Therapy ; Humans ; Male ; Mice ; Mice, Transgenic ; Motor Neurons/pathology ; Nerve Degeneration ; Proto-Oncogene Proteins c-bcl-2/*physiology ; Proto-Oncogene Proteins c-jun/analysis ; Spinal Cord/pathology ; Superoxide Dismutase/genetics/metabolism ; Survival Rate ; Ubiquitins/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1998-01-31
    Description: The cerebral cortex of Alzheimer's and Down syndrome patients is characterized by the presence of protein deposits in neurofibrillary tangles, neuritic plaques, and neuropil threads. These structures were shown to contain forms of beta amyloid precursor protein and ubiquitin-B that are aberrant (+1 proteins) in the carboxyl terminus. The +1 proteins were not found in young control patients, whereas the presence of ubiquitin-B+1 in elderly control patients may indicate early stages of neurodegeneration. The two species of +1 proteins displayed cellular colocalization, suggesting a common origin, operating at the transcriptional level or by posttranscriptional editing of RNA. This type of transcript mutation is likely an important factor in the widely occurring nonfamilial early- and late-onset forms of Alzheimer's disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van Leeuwen, F W -- de Kleijn, D P -- van den Hurk, H H -- Neubauer, A -- Sonnemans, M A -- Sluijs, J A -- Koycu, S -- Ramdjielal, R D -- Salehi, A -- Martens, G J -- Grosveld, F G -- Peter, J -- Burbach, H -- Hol, E M -- New York, N.Y. -- Science. 1998 Jan 9;279(5348):242-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School for Neurosciences Amsterdam, Netherlands Institute for Brain Research, 1105 AZ Amsterdam, The Netherlands. f.van.leeuwen@nih.knaw.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9422699" target="_blank"〉PubMed〈/a〉
    Keywords: Aged ; Aging/genetics ; Alzheimer Disease/*genetics/metabolism/pathology ; Amino Acid Sequence ; Amyloid beta-Protein Precursor/analysis/chemistry/*genetics ; Base Sequence ; *Brain Chemistry ; Cerebral Cortex/chemistry/pathology ; Cloning, Molecular ; Down Syndrome/*genetics/metabolism/pathology ; Female ; *Frameshift Mutation ; Hippocampus/chemistry/pathology ; Humans ; Male ; Molecular Sequence Data ; Neurites/chemistry ; Neurofibrillary Tangles/chemistry ; Neuropil/chemistry ; Polymerase Chain Reaction ; RNA Editing ; Repetitive Sequences, Nucleic Acid ; Sequence Deletion ; Transcription, Genetic ; Ubiquitins/analysis/chemistry/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1998-10-17
    Description: CD8+ cytotoxic T lymphocytes (CTLs) are critical for protection against intracellular pathogens but often have been difficult to induce by subunit vaccines in animals. DNA vaccines elicit protective CD8+ T cell responses. Malaria-naive volunteers who were vaccinated with plasmid DNA encoding a malaria protein developed antigen-specific, genetically restricted, CD8+ T cell-dependent CTLs. Responses were directed against all 10 peptides tested and were restricted by six human lymphocyte antigen (HLA) class I alleles. This first demonstration in healthy naive humans of the induction of CD8+ CTLs by DNA vaccines, including CTLs that were restricted by multiple HLA alleles in the same individual, provides a foundation for further human testing of this potentially revolutionary vaccine technology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, R -- Doolan, D L -- Le, T P -- Hedstrom, R C -- Coonan, K M -- Charoenvit, Y -- Jones, T R -- Hobart, P -- Margalith, M -- Ng, J -- Weiss, W R -- Sedegah, M -- de Taisne, C -- Norman, J A -- Hoffman, S L -- New York, N.Y. -- Science. 1998 Oct 16;282(5388):476-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Malaria Program, Naval Medical Research Institute, Bethesda, MD 20889-5607, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9774275" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Animals ; Antigens, Protozoan/genetics/immunology ; Female ; Genes, MHC Class I ; HLA Antigens/genetics ; Humans ; Immunization Schedule ; Malaria Vaccines/genetics/*immunology ; Male ; Plasmodium falciparum/genetics/*immunology ; Protozoan Proteins/*genetics/*immunology ; T-Lymphocytes, Cytotoxic/*immunology ; Vaccination ; Vaccines, DNA/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1997-08-22
    Description: It has been suggested that European Middle Pleistocene humans, Neandertals, and prehistoric modern humans had a greater sexual dimorphism than modern humans. Analysis of body size variation and cranial capacity variation in the large sample from the Sima de los Huesos site in Spain showed instead that the sexual dimorphism is comparable in Middle Pleistocene and modern populations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arsuaga, J L -- Carretero, J M -- Lorenzo, C -- Gracia, A -- Martinez, I -- Bermudez de Castro, J M -- Carbonell, E -- New York, N.Y. -- Science. 1997 Aug 22;277(5329):1086-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departamento de Paleontologia, Instituto de Geologia Economica, Facultad de Ciencias Geologicas, Universidad Complutense de Madrid, Ciudad Universitaria 28040 Madrid, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9262474" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Body Constitution ; Female ; *Fossils ; Hominidae/*anatomy & histology ; Humans ; Male ; *Sex Characteristics ; Skull/*anatomy & histology ; Spain
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1998-06-20
    Description: Interleukin-12 (IL-12) is a cytokine that promotes cell-mediated immunity to intracellular pathogens by inducing type 1 helper T cell (TH1) responses and interferon-gamma (IFN-gamma) production. IL-12 binds to high-affinity beta1/beta2 heterodimeric IL-12 receptor (IL-12R) complexes on T cell and natural killer cells. Three unrelated individuals with severe, idiopathic mycobacterial and Salmonella infections were found to lack IL-12Rbeta1 chain expression. Their cells were deficient in IL-12R signaling and IFN-gamma production, and their remaining T cell responses were independent of endogenous IL-12. IL-12Rbeta1 sequence analysis revealed genetic mutations that resulted in premature stop codons in the extracellular domain. The lack of IL-12Rbeta1 expression results in a human immunodeficiency and shows the essential role of IL-12 in resistance to infections due to intracellular bacteria.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉de Jong, R -- Altare, F -- Haagen, I A -- Elferink, D G -- Boer, T -- van Breda Vriesman, P J -- Kabel, P J -- Draaisma, J M -- van Dissel, J T -- Kroon, F P -- Casanova, J L -- Ottenhoff, T H -- New York, N.Y. -- Science. 1998 May 29;280(5368):1435-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunohematology and Bloodbank, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, the Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9603733" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Child, Preschool ; Codon, Terminator ; Disease Susceptibility ; Female ; Frameshift Mutation ; Genes, Recessive ; Humans ; Interferon-gamma/biosynthesis ; Interleukin-12/*immunology/metabolism ; Lymphocyte Activation ; Mutation ; Mycobacterium avium-intracellulare Infection/*immunology ; *Mycobacterium bovis ; Receptors, Interferon/metabolism ; Receptors, Interleukin/deficiency/*genetics/metabolism ; Receptors, Interleukin-12 ; Salmonella Infections/*immunology ; Sequence Deletion ; T-Lymphocytes/immunology ; Tuberculosis/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1995-06-02
    Description: Fas (also known as Apo1 and CD95) is a cell surface receptor involved in apoptotic cell death. Fas expression and function were analyzed in three children (including two siblings) with a lymphoproliferative syndrome, two of whom also had autoimmune disorders. A large deletion in the gene encoding Fas and no detectable cell surface expression characterized the most affected patient. Clinical manifestations in the two related patients were less severe: Fas-mediated apoptosis was impaired and a deletion within the intracytoplasmic domain was detected. These findings illustrate the crucial regulatory role of Fas and may provide a molecular basis for some autoimmune diseases in humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rieux-Laucat, F -- Le Deist, F -- Hivroz, C -- Roberts, I A -- Debatin, K M -- Fischer, A -- de Villartay, J P -- New York, N.Y. -- Science. 1995 Jun 2;268(5215):1347-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut National de la Sante et de la Recherche Medicale (INSERM) U 429, Hopital Necker-Enfants Malades, Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7539157" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antigens, CD95 ; Antigens, Surface/chemistry/*genetics/physiology ; Apoptosis ; Autoimmune Diseases/*genetics/immunology/pathology ; Base Sequence ; Child ; Female ; *Frameshift Mutation ; Humans ; Infant ; Lymphoproliferative Disorders/*genetics/immunology/pathology ; Male ; Molecular Sequence Data ; Sequence Deletion ; Syndrome ; Thrombocytopenia/genetics/immunology/pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...