ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2006-05-06
    Description: Grid cells in the medial entorhinal cortex (MEC) are part of an environment-independent spatial coordinate system. To determine how information about location, direction, and distance is integrated in the grid-cell network, we recorded from each principal cell layer of MEC in rats that explored two-dimensional environments. Whereas layer II was predominated by grid cells, grid cells colocalized with head-direction cells and conjunctive grid x head-direction cells in the deeper layers. All cell types were modulated by running speed. The conjunction of positional, directional, and translational information in a single MEC cell type may enable grid coordinates to be updated during self-motion-based navigation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sargolini, Francesca -- Fyhn, Marianne -- Hafting, Torkel -- McNaughton, Bruce L -- Witter, Menno P -- Moser, May-Britt -- Moser, Edvard I -- New York, N.Y. -- Science. 2006 May 5;312(5774):758-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for the Biology of Memory, Norwegian University of Science and Technology, 7489 Trondheim, Norway.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16675704" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Electrophysiology ; Entorhinal Cortex/*cytology/*physiology ; Exploratory Behavior ; Locomotion ; Male ; Nerve Net/*physiology ; Neurons/*physiology ; *Orientation ; Rats ; Rats, Long-Evans ; *Space Perception
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2005-07-26
    Description: Hippocampal neurons were recorded under conditions in which the recording chamber was varied but its location remained unchanged versus conditions in which an identical chamber was encountered in different places. Two forms of neuronal pattern separation occurred. In the variable cue-constant place condition, the firing rates of active cells varied, often over more than an order of magnitude, whereas the location of firing remained constant. In the variable place-constant cue condition, both location and rates changed, so that population vectors for a given location in the chamber were statistically independent. These independent encoding schemes may enable simultaneous representation of spatial and episodic memory information.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leutgeb, Stefan -- Leutgeb, Jill K -- Barnes, Carol A -- Moser, Edvard I -- McNaughton, Bruce L -- Moser, May-Britt -- New York, N.Y. -- Science. 2005 Jul 22;309(5734):619-23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for the Biology of Memory, Medical-Technical Research Centre, Norwegian University of Science and Technology, 7489 Trondheim, Norway.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16040709" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain Mapping ; Cues ; Electrodes, Implanted ; Electrophysiology ; Hippocampus/cytology/*physiology ; Interneurons/physiology ; Male ; Memory/*physiology ; Nerve Net/*physiology ; Neurons/*physiology ; Orientation/*physiology ; Perception/physiology ; Pyramidal Cells/*physiology ; Rats ; Rats, Long-Evans ; Space Perception/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-12-20
    Description: We report the existence of an entorhinal cell type that fires when an animal is close to the borders of the proximal environment. The orientation-specific edge-apposing activity of these "border cells" is maintained when the environment is stretched and during testing in enclosures of different size and shape in different rooms. Border cells are relatively sparse, making up less than 10% of the local cell population, but can be found in all layers of the medial entorhinal cortex as well as the adjacent parasubiculum, often intermingled with head-direction cells and grid cells. Border cells may be instrumental in planning trajectories and anchoring grid fields and place fields to a geometric reference frame.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Solstad, Trygve -- Boccara, Charlotte N -- Kropff, Emilio -- Moser, May-Britt -- Moser, Edvard I -- New York, N.Y. -- Science. 2008 Dec 19;322(5909):1865-8. doi: 10.1126/science.1166466.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Kavli Institute for Systems Neuroscience and Centre for the Biology of Memory, Norwegian University of Science and Technology, 7489 Trondheim, Norway.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19095945" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain Mapping ; Cues ; Electrophysiology ; Entorhinal Cortex/*cytology/*physiology ; Male ; Neurons/*physiology ; *Orientation ; Rats ; Rats, Long-Evans ; *Space Perception
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...