ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-02-14
    Description: Somatic cell nuclear transfer (SCNT) technology has recently been used to generate animals with a common genetic composition. In this study, we report the derivation of a pluripotent embryonic stem (ES) cell line (SCNT-hES-1) from a cloned human blastocyst. The SCNT-hES-1 cells displayed typical ES cell morphology and cell surface markers and were capable of differentiating into embryoid bodies in vitro and of forming teratomas in vivo containing cell derivatives from all three embryonic germ layers in severe combined immunodeficient mice. After continuous proliferation for more than 70 passages, SCNT-hES-1 cells maintained normal karyotypes and were genetically identical to the somatic nuclear donor cells. Although we cannot completely exclude the possibility that the cells had a parthenogenetic origin, imprinting analyses support a SCNT origin of the derived human ES cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hwang, Woo Suk -- Ryu, Young June -- Park, Jong Hyuk -- Park, Eul Soon -- Lee, Eu Gene -- Koo, Ja Min -- Jeon, Hyun Yong -- Lee, Byeong Chun -- Kang, Sung Keun -- Kim, Sun Jong -- Ahn, Curie -- Hwang, Jung Hye -- Park, Ky Young -- Cibelli, Jose B -- Moon, Shin Yong -- New York, N.Y. -- Science. 2004 Mar 12;303(5664):1669-74. Epub 2004 Feb 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea. hwangws@snu.ac.kr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14963337" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomarkers/analysis ; Blastocyst/*cytology ; Cell Differentiation ; *Cell Line ; *Cloning, Organism ; Culture Media ; Culture Techniques ; DNA Fingerprinting ; Embryo, Mammalian/*cytology ; Female ; Genomic Imprinting ; Humans ; Karyotyping ; Male ; Mice ; Mice, SCID ; Nuclear Transfer Techniques ; Oocyte Donation ; Ovarian Follicle/cytology ; Parthenogenesis ; Pluripotent Stem Cells/chemistry/*cytology ; Reverse Transcriptase Polymerase Chain Reaction ; Tandem Repeat Sequences ; Teratoma/etiology/pathology ; Testicular Neoplasms/etiology/pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2005-05-21
    Description: Patient-specific, immune-matched human embryonic stem cells (hESCs) are anticipated to be of great biomedical importance for studies of disease and development and to advance clinical deliberations regarding stem cell transplantation. Eleven hESC lines were established by somatic cell nuclear transfer (SCNT) of skin cells from patients with disease or injury into donated oocytes. These lines, nuclear transfer (NT)-hESCs, grown on human feeders from the same NT donor or from genetically unrelated individuals, were established at high rates, regardless of NT donor sex or age. NT-hESCs were pluripotent, chromosomally normal, and matched the NT patient's DNA. The major histocompatibility complex identity of each NT-hESC when compared to the patient's own showed immunological compatibility, which is important for eventual transplantation. With the generation of these NT-hESCs, evaluations of genetic and epigenetic stability can be made. Additional work remains to be done regarding the development of reliable directed differentiation and the elimination of remaining animal components. Before clinical use of these cells can occur, preclinical evidence is required to prove that transplantation of differentiated NT-hESCs can be safe, effective, and tolerated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hwang, Woo Suk -- Roh, Sung Il -- Lee, Byeong Chun -- Kang, Sung Keun -- Kwon, Dae Kee -- Kim, Sue -- Kim, Sun Jong -- Park, Sun Woo -- Kwon, Hee Sun -- Lee, Chang Kyu -- Lee, Jung Bok -- Kim, Jin Mee -- Ahn, Curie -- Paek, Sun Ha -- Chang, Sang Sik -- Koo, Jung Jin -- Yoon, Hyun Soo -- Hwang, Jung Hye -- Hwang, Youn Young -- Park, Ye Soo -- Oh, Sun Kyung -- Kim, Hee Sun -- Park, Jong Hyuk -- Moon, Shin Yong -- Schatten, Gerald -- New York, N.Y. -- Science. 2005 Jun 17;308(5729):1777-83. Epub 2005 May 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea. hwangws@snu.ac.kr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15905366" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Agammaglobulinemia ; Blastocyst/*cytology ; Cell Differentiation ; *Cell Line ; Child ; Child, Preschool ; *Cloning, Organism ; DNA Fingerprinting ; Diabetes Mellitus, Type 1 ; Epigenesis, Genetic ; Ethics Committees, Research ; Female ; Fibroblasts ; HLA Antigens/analysis ; Humans ; Informed Consent ; Karyotyping ; Male ; *Nuclear Transfer Techniques ; Oocyte Donation ; Pluripotent Stem Cells/*cytology/immunology ; Spinal Cord Injuries ; Stem Cell Transplantation ; Tissue and Organ Procurement
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...