ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Springer
    In:  Berlin, Springer, vol. 10, no. Subvol. b, pp. 220, (ISBN: 0-08-037951-6)
    Publication Date: 1977
    Keywords: Textbook of physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1327
    Keywords: Key words207Pb NMR ; Calmodulin ; Parvalbumin ; Helix-loop-helix
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract  The high-affinity Ca2+–binding sites of carp (pI 4.25) and pike (pI 5.0) parvalbumins, as well as those of mammalian calmodulin (CaM) and its C-terminal tryptic half-molecule (TR2C), were analyzed by 207Pb NMR spectroscopy. For the parvalbumins, two 207Pb signals were observed ranging in chemical shift from ≈750 to ≈1260 ppm downfield of aqueous Pb(NO3)2, corresponding to 207Pb2+ bound to the two high-affinity helix-loop-helix Ca2+–binding sites in each of these proteins. Four 207Pb signals, which fall in the same chemical shift window, could be discerned for CaM. Experiments on TR2C permitted the assignment of each signal as due to 207Pb2+ occupying a helix-loop-helix site in either the N- or the C-lobe of the intact protein. 207Pb and 1H NMR titration studies on CaM provided evidence that Pb2+ binding to all four sites occurs simultaneously, in contrast to the behavior of this protein in the presence of Ca2+. Titrations of the 207Pb2+–forms of CaM and TR2C with the antipsychotic drug trifluoperazine demonstrated that drug binding to the exposed hydrophobic surfaces in CaM causes substantial conformational changes and proceeds in a sequential manner – first the C-lobe and subsequently the N-lobe. Finally, the field dependence of CaM-bound 207Pb signals was examined. The 207Pb signal linewidths exhibited a sharp dependence on the square of the external magnetic field, a trend characteristic of relaxation via chemical shift anisotropy. Relaxation studies on TR2C demonstrated that chemical exchange also contributes to the observed linewidths. The large chemical shift dispersion observed for the 207Pb signals of the three proteins studied here illustrates the remarkable sensitivity of this parameter to subtle differences in the chemical environment of the protein-bound 207Pb nucleus. To our knowledge, the data presented in this article comprise the first ever published example of the application of 207Pb NMR spectroscopy to metalloproteins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-0778
    Keywords: calcium phosphate ; CHO-K1 ; cytosolic calcium signaling ; HEK 293 ; laser scanning confocal microscopy ; transient transfection
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract For the controlled production of recombinant proteinsin mammalian cells by transient transfection, it maybe desirable not only to manipulate, but also todiagnose the expression success early. Here, weapplied laser scanning confocal microscopy to monitortransfection induced intracellular Ca2+responses. We compared Chinese hamster ovary (CHO K1)versus human embryo kidney (HEK) 293 cell lines, whichdiffer largely in their transfectability. An improvedcalcium phosphate transfection method was used for itssimplicity and its demonstrated upscale potential.Cytosolic Ca2+ signaling appeared to inverselyreflect the cellular transfection fate. Virtually allCHO cells exhibited asynchronous, cytosolicCa2+ oscillations, which peaked 4 h afteraddition of the transfecting solution. Yet, most ofthe HEK cells displayed a slow and continuousCa2+ increase over the time of transfection. CHOcells, when exposed to a transfection-enhancingglycerol shock, strongly downregulated their Ca2+response, including its oscillations. When treatedwith thapsigargin, a Ca2+ store depleting drug,the number of successfully transfected CHO cells was significantly reduced. Our result points tointracellular store release as a critical componentfor the transfection fate of CHO cells, and its early detection before product visualization.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...