ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  EPIC3Permafrost and periglacial processes, 16(3), pp. 277-290
    Publication Date: 2019-07-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Analytical chemistry 34 (1962), S. 398-400 
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 71 (1949), S. 2566-2568 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of soil science 53 (2002), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: The food dye Brilliant Blue FCF (Color Index 42090) is often used as dye tracer in field studies for visualizing the flow pathways of water in soils. Batch studies confirmed findings of other researchers that non-linear sorption is important for Brilliant Blue, especially at small concentrations (〈 10 g l−1 for our soil), and that retardation increases with decreasing concentrations as well as with increasing ionic strength of solutions. Therefore, it is not obvious if it can be used as an indicator for water flow paths as is often done. In this study, we compared the mobility of Brilliant Blue in a field soil (gleyic Luvisol) with that of bromide. Brilliant Blue and potassium bromide were simultaneously applied as a 6-mm pulse on a small plot in the field, and the tracers were displaced with 89 mm of tracer-free water using a constant intensity of 3.9 ± 0.2 mm hour−1. Both tracer concentrations were determined on 144 soil cores taken from a 1 m × 1 m vertical soil profile. The transport behaviour differed in both (i) mean displacement and (ii) spatial concentration pattern. We found the retardation of Brilliant Blue could not be neglected and, in contrast to the bromide pattern, a pulse splitting was observed at the plough pan. Numerical simulations with a particle tracking code revealed that the one-dimensional concentration profile of bromide was represented fairly well by the model, but the prediction of the double peak in the Brilliant Blue concentration profile failed. With additional assumptions, there were indications that Brilliant Blue does not follow the same flow paths as bromide. However, the question of Brilliant Blue taking the same flow pathways as bromide cannot be adequately answered by comparing both concentration distributions, because we look at two different transport distances due to the retardation of Brilliant Blue. It became obvious, however, that Brilliant Blue is not a suitable compound for tracing the travel time of water itself.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of soil science 48 (1997), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: The geometry of pore space in soil is considered to be the key in understanding transport of water, gas and solute. However, a quantitative and explicit characterization, by means of a physical interpretation, is difficult because of the geometric complexity of soil structure.Pores larger than 40 μm within two soil horizons have been analysed morphologically on 3-dimensional digital representations of the pore space obtained by serial sections through impregnated specimens. The Euler-Poincaré characteristic has been determined as an index of connectivity in three dimensions. The pore connectivity is quantified as a function of the minimum pore diameter considered leading to a connectivity function of the pore space. Different pore size classes were distinguished using 3-dimensional erosion and dilation. The connectivity function turned out to differentiate between two soil materials. The pore space in an upper Ah horizon is intensely connected through pores between 40 and 100 μm, in contrast to the pore space in the AhBv beneath it. The morphological pore-size distributions were compared to the pore-size distribution obtained by water retention measurements. The discrepancy between these different methods corresponds to the expectation due to pore connectivity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of soil science 53 (2002), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: The quantification of the spatial heterogeneity of soil structure is one of the main difficulties to overcome for an adequate understanding of soil processes. There are different competing concepts for the type of heterogeneity, including macroscopic homogeneity, discrete hierarchy or fractal. With respect to these different concepts we investigate the structure of the pore space in one single sample (4 × 103 mm3) by analysing basic geometric quantities of the pores 〉 0.3 mm within gradually increasing subsamples. To demonstrate the relation between geometrical and functional properties we simulate gas diffusion within the three-dimensional pore space of the different subsamples. An efficient tool to determine the geometric quantities is presented. As a result, no representative elementary volume (REV) is found in terms of pore-volume density which increases with sample size. The same is true for the simulated gas diffusion coefficient. This effect is explained by two different types of pores, i.e. big root channels and smaller pores, having different levels of organization. We discuss the different concepts of structural organization which may be appropriate models for the structure investigated. We argue that the discrete hierarchical approach is the most profitable in practice.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of soil science 49 (1998), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: We investigated the possibility of inferring effective hydraulic properties of soil from the structure of the pore space. The aim was to identify structural properties, which are essential for water flow, so that physical experiments may be replaced by direct morphological measurements. The pore structure was investigated in three dimensions by serial sections through impregnated samples. The complex geometry of pore space was quantified in terms of two characteristics: pore-size distribution and pore connectivity. Only pores larger than 0.04 mm were considered. The results were used as input parameters for a pore-scale network model. The main desorption branch of the soil-water characteristic and the corresponding hydraulic conductivity function of the network model were calculated by numerical simulation. The simulation results, which are exclusively based on morphological investigations, were compared with independently measured results from a multi-step outflow experiment. This approach was demonstrated for two centrasting soil materials: the A and B horizons of a silty agricultural soil. The simulations were close to the experimental data, except for the absolute values of the hydraulic conductivity. The pore-size distribution and pore connectivity govern the shape of hydraulic functions and the applied morphometric methods are suitable for predicting essential characteristics of hydraulic soil properties.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of soil science 51 (2000), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Network models are idealized geometrical representations of porous media. They allow the simulation of effective hydraulic properties and of solute transport for well-defined porous structures. In this paper, the relation between pore structure and effective properties is studied using a network model which can be adjusted to predefined pore-size distributions and pore topologies. I show that pore topology can be adjusted such that quite different pore-size distributions lead to essentially identical water retention curves. This puts into question the common interpretation of the retention curve as being indicative of the pore-size distribution. However, I also found that both the hydraulic conductivity and the dispersion of a solute depend on the water retention curve and not on the particular combination of pore-size distribution and topology which make it up. This corroborates the widely used approach of inferring relative permeabilities from water retention data.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of soil science 51 (2000), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: The inability to predict flow and transport behaviour based on a priori information demonstrates the lack of knowledge we currently have concerning transport-relevant properties or processes, or both. We present an approach in which the behaviour of effective solute transport at the scale of a soil column (100 mm) is predicted by taking into account the spatial structure of the hydraulic properties at the local scale (1 mm). The local absorption coefficients obtained from X-ray tomography, which are linearly related to bulk density, are used as local proxy for hydraulic properties. As a first approximation, two density classes were distinguished, and the three-dimensional structure of the hydraulic properties was implemented in a model of flow and transport. The local hydraulic properties were obtained from a network model, except for the absolute value of the hydraulic conductivity function which was measured. Model simulations were compared with a measured breakthrough curve determined on the same soil sample. The two agreed well, although the local hydraulic properties and parameter structure were determined independently with respect to a breakthrough experiment. Predictions of solute transport at the column scale were sensitive to the difference in saturated hydraulic conductivities of both materials, but not to the local dispersivities. The simulations demonstrate that (i) assuming validity of the Richards equation and the convection–dispersion equation on the local scale leads to a good description of the effective flow and transport behaviour at the column scale without making any assumptions about the governing processes at that scale; (ii) the dispersion parameters, which are notoriously difficult to determine, need not be determined since their effect is included explicitly; and (iii) local absorption coefficients can be used as a local proxy for the parameter field of the hydraulic properties.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...