ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-01-08
    Description: G-protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters. They are the largest group of therapeutic targets for a broad spectrum of diseases. Recent crystal structures of GPCRs have revealed structural conservation extending from the orthosteric ligand-binding site in the transmembrane core to the cytoplasmic G-protein-coupling domains. In contrast, the extracellular surface (ECS) of GPCRs is remarkably diverse and is therefore an ideal target for the discovery of subtype-selective drugs. However, little is known about the functional role of the ECS in receptor activation, or about conformational coupling of this surface to the native ligand-binding pocket. Here we use NMR spectroscopy to investigate ligand-specific conformational changes around a central structural feature in the ECS of the beta(2) adrenergic receptor: a salt bridge linking extracellular loops 2 and 3. Small-molecule drugs that bind within the transmembrane core and exhibit different efficacies towards G-protein activation (agonist, neutral antagonist and inverse agonist) also stabilize distinct conformations of the ECS. We thereby demonstrate conformational coupling between the ECS and the orthosteric binding site, showing that drugs targeting this diverse surface could function as allosteric modulators with high subtype selectivity. Moreover, these studies provide a new insight into the dynamic behaviour of GPCRs not addressable by static, inactive-state crystal structures.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2805469/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2805469/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bokoch, Michael P -- Zou, Yaozhong -- Rasmussen, Soren G F -- Liu, Corey W -- Nygaard, Rie -- Rosenbaum, Daniel M -- Fung, Juan Jose -- Choi, Hee-Jung -- Thian, Foon Sun -- Kobilka, Tong Sun -- Puglisi, Joseph D -- Weis, William I -- Pardo, Leonardo -- Prosser, R Scott -- Mueller, Luciano -- Kobilka, Brian K -- GM56169/GM/NIGMS NIH HHS/ -- NS028471/NS/NINDS NIH HHS/ -- R01 GM056169/GM/NIGMS NIH HHS/ -- R01 GM056169-13/GM/NIGMS NIH HHS/ -- R21 MH082313/MH/NIMH NIH HHS/ -- R21 MH082313-01A1/MH/NIMH NIH HHS/ -- R37 NS028471/NS/NINDS NIH HHS/ -- R37 NS028471-19/NS/NINDS NIH HHS/ -- England -- Nature. 2010 Jan 7;463(7277):108-12. doi: 10.1038/nature08650.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20054398" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic beta-2 Receptor Agonists ; Adrenergic beta-2 Receptor Antagonists ; Allosteric Regulation/drug effects ; Binding Sites ; Crystallography, X-Ray ; Drug Inverse Agonism ; Ethanolamines/pharmacology ; Formoterol Fumarate ; Humans ; Ligands ; Lysine/analogs & derivatives/metabolism ; Methylation ; Models, Molecular ; Mutant Proteins ; Nuclear Magnetic Resonance, Biomolecular ; Propanolamines/metabolism/pharmacology ; Protein Structure, Tertiary/drug effects ; Receptors, Adrenergic, beta-2/*chemistry/*metabolism ; Static Electricity ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-12-12
    Description: Protease-activated receptor 1 (PAR1) is the prototypical member of a family of G-protein-coupled receptors that mediate cellular responses to thrombin and related proteases. Thrombin irreversibly activates PAR1 by cleaving the amino-terminal exodomain of the receptor, which exposes a tethered peptide ligand that binds the heptahelical bundle of the receptor to affect G-protein activation. Here we report the 2.2 A resolution crystal structure of human PAR1 bound to vorapaxar, a PAR1 antagonist. The structure reveals an unusual mode of drug binding that explains how a small molecule binds virtually irreversibly to inhibit receptor activation by the tethered ligand of PAR1. In contrast to deep, solvent-exposed binding pockets observed in other peptide-activated G-protein-coupled receptors, the vorapaxar-binding pocket is superficial but has little surface exposed to the aqueous solvent. Protease-activated receptors are important targets for drug development. The structure reported here will aid the development of improved PAR1 antagonists and the discovery of antagonists to other members of this receptor family.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3531875/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3531875/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Cheng -- Srinivasan, Yoga -- Arlow, Daniel H -- Fung, Juan Jose -- Palmer, Daniel -- Zheng, Yaowu -- Green, Hillary F -- Pandey, Anjali -- Dror, Ron O -- Shaw, David E -- Weis, William I -- Coughlin, Shaun R -- Kobilka, Brian K -- HL44907/HL/NHLBI NIH HHS/ -- HL65590/HL/NHLBI NIH HHS/ -- NS028471/NS/NINDS NIH HHS/ -- R01 HL044907/HL/NHLBI NIH HHS/ -- R01 HL065185/HL/NHLBI NIH HHS/ -- R01 HL065590/HL/NHLBI NIH HHS/ -- England -- Nature. 2012 Dec 20;492(7429):387-92. doi: 10.1038/nature11701. Epub 2012 Dec 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23222541" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Enzyme Activation/genetics ; Humans ; Hydrolysis ; Lactones/chemistry/pharmacology ; Ligands ; Models, Molecular ; Molecular Dynamics Simulation ; Myocardial Infarction/prevention & control ; Protein Conformation ; Pyridines/chemistry/pharmacology ; Receptor, PAR-1/agonists/antagonists & inhibitors/*chemistry/metabolism ; Receptors, G-Protein-Coupled/chemistry/classification ; Receptors, Thrombin
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-05-19
    Description: The opioid receptor family comprises three members, the micro-, delta- and kappa-opioid receptors, which respond to classical opioid alkaloids such as morphine and heroin as well as to endogenous peptide ligands like endorphins. They belong to the G-protein-coupled receptor (GPCR) superfamily, and are excellent therapeutic targets for pain control. The delta-opioid receptor (delta-OR) has a role in analgesia, as well as in other neurological functions that remain poorly understood. The structures of the micro-OR and kappa-OR have recently been solved. Here we report the crystal structure of the mouse delta-OR, bound to the subtype-selective antagonist naltrindole. Together with the structures of the micro-OR and kappa-OR, the delta-OR structure provides insights into conserved elements of opioid ligand recognition while also revealing structural features associated with ligand-subtype selectivity. The binding pocket of opioid receptors can be divided into two distinct regions. Whereas the lower part of this pocket is highly conserved among opioid receptors, the upper part contains divergent residues that confer subtype selectivity. This provides a structural explanation and validation for the 'message-address' model of opioid receptor pharmacology, in which distinct 'message' (efficacy) and 'address' (selectivity) determinants are contained within a single ligand. Comparison of the address region of the delta-OR with other GPCRs reveals that this structural organization may be a more general phenomenon, extending to other GPCR families as well.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3523198/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3523198/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Granier, Sebastien -- Manglik, Aashish -- Kruse, Andrew C -- Kobilka, Tong Sun -- Thian, Foon Sun -- Weis, William I -- Kobilka, Brian K -- DA031418/DA/NIDA NIH HHS/ -- NS028471/NS/NINDS NIH HHS/ -- R01 GM083118/GM/NIGMS NIH HHS/ -- R01 NS028471/NS/NINDS NIH HHS/ -- R21 DA031418/DA/NIDA NIH HHS/ -- England -- Nature. 2012 May 16;485(7398):400-4. doi: 10.1038/nature11111.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA. granier@stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22596164" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Conserved Sequence ; Crystallography, X-Ray ; Mice ; Models, Molecular ; Molecular Sequence Data ; Naltrexone/*analogs & derivatives/chemistry/metabolism/pharmacology ; Protein Structure, Tertiary ; Receptors, Opioid, delta/antagonists & inhibitors/*chemistry/metabolism ; Reproducibility of Results ; Structure-Activity Relationship ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-01-27
    Description: The parasympathetic branch of the autonomic nervous system regulates the activity of multiple organ systems. Muscarinic receptors are G-protein-coupled receptors that mediate the response to acetylcholine released from parasympathetic nerves. Their role in the unconscious regulation of organ and central nervous system function makes them potential therapeutic targets for a broad spectrum of diseases. The M2 muscarinic acetylcholine receptor (M2 receptor) is essential for the physiological control of cardiovascular function through activation of G-protein-coupled inwardly rectifying potassium channels, and is of particular interest because of its extensive pharmacological characterization with both orthosteric and allosteric ligands. Here we report the structure of the antagonist-bound human M2 receptor, the first human acetylcholine receptor to be characterized structurally, to our knowledge. The antagonist 3-quinuclidinyl-benzilate binds in the middle of a long aqueous channel extending approximately two-thirds through the membrane. The orthosteric binding pocket is formed by amino acids that are identical in all five muscarinic receptor subtypes, and shares structural homology with other functionally unrelated acetylcholine binding proteins from different species. A layer of tyrosine residues forms an aromatic cap restricting dissociation of the bound ligand. A binding site for allosteric ligands has been mapped to residues at the entrance to the binding pocket near this aromatic cap. The structure of the M2 receptor provides insights into the challenges of developing subtype-selective ligands for muscarinic receptors and their propensity for allosteric regulation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3345277/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3345277/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haga, Kazuko -- Kruse, Andrew C -- Asada, Hidetsugu -- Yurugi-Kobayashi, Takami -- Shiroishi, Mitsunori -- Zhang, Cheng -- Weis, William I -- Okada, Tetsuji -- Kobilka, Brian K -- Haga, Tatsuya -- Kobayashi, Takuya -- GM083118/GM/NIGMS NIH HHS/ -- NS028471/NS/NINDS NIH HHS/ -- R01 NS028471/NS/NINDS NIH HHS/ -- R37 NS028471/NS/NINDS NIH HHS/ -- R37 NS028471-21/NS/NINDS NIH HHS/ -- England -- Nature. 2012 Jan 25;482(7386):547-51. doi: 10.1038/nature10753.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Life Science, Faculty of Science, Gakushuin University, Mejiro 1-5-1, Tokyo 171-8588, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22278061" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcholine/analogs & derivatives/chemistry/metabolism ; Acetylcholinesterase/chemistry/metabolism ; Allosteric Regulation ; Binding Sites ; Carrier Proteins/chemistry/metabolism ; Cholinergic Antagonists/*chemistry/metabolism/*pharmacology ; Crystallography, X-Ray ; Evolution, Molecular ; Humans ; Ligands ; Models, Molecular ; Protein Conformation ; Quinuclidinyl Benzilate/*analogs & ; derivatives/*chemistry/metabolism/*pharmacology ; Receptor, Muscarinic M2/*antagonists & inhibitors/*chemistry/genetics/metabolism ; Tyrosine/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-01-14
    Description: G protein coupled receptors (GPCRs) exhibit a spectrum of functional behaviours in response to natural and synthetic ligands. Recent crystal structures provide insights into inactive states of several GPCRs. Efforts to obtain an agonist-bound active-state GPCR structure have proven difficult due to the inherent instability of this state in the absence of a G protein. We generated a camelid antibody fragment (nanobody) to the human beta(2) adrenergic receptor (beta(2)AR) that exhibits G protein-like behaviour, and obtained an agonist-bound, active-state crystal structure of the receptor-nanobody complex. Comparison with the inactive beta(2)AR structure reveals subtle changes in the binding pocket; however, these small changes are associated with an 11 A outward movement of the cytoplasmic end of transmembrane segment 6, and rearrangements of transmembrane segments 5 and 7 that are remarkably similar to those observed in opsin, an active form of rhodopsin. This structure provides insights into the process of agonist binding and activation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058308/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058308/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rasmussen, Soren G F -- Choi, Hee-Jung -- Fung, Juan Jose -- Pardon, Els -- Casarosa, Paola -- Chae, Pil Seok -- Devree, Brian T -- Rosenbaum, Daniel M -- Thian, Foon Sun -- Kobilka, Tong Sun -- Schnapp, Andreas -- Konetzki, Ingo -- Sunahara, Roger K -- Gellman, Samuel H -- Pautsch, Alexander -- Steyaert, Jan -- Weis, William I -- Kobilka, Brian K -- GM083118/GM/NIGMS NIH HHS/ -- GM56169/GM/NIGMS NIH HHS/ -- NS028471/NS/NINDS NIH HHS/ -- P01 GM75913/GM/NIGMS NIH HHS/ -- P60DK-20572/DK/NIDDK NIH HHS/ -- R01 GM068603/GM/NIGMS NIH HHS/ -- R01 GM083118/GM/NIGMS NIH HHS/ -- R01 GM083118-04/GM/NIGMS NIH HHS/ -- R37 NS028471/NS/NINDS NIH HHS/ -- R37 NS028471-21/NS/NINDS NIH HHS/ -- England -- Nature. 2011 Jan 13;469(7329):175-80. doi: 10.1038/nature09648.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21228869" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic beta-2 Receptor ; Agonists/*chemistry/immunology/metabolism/*pharmacology ; Animals ; Binding Sites ; Camelids, New World ; Crystallography, X-Ray ; Drug Inverse Agonism ; Humans ; Immunoglobulin Fragments/*chemistry/*immunology/metabolism/pharmacology ; Ligands ; Models, Molecular ; Movement/drug effects ; Nanostructures/*chemistry ; Opsins/agonists/chemistry/metabolism ; Propanolamines/chemistry/metabolism/pharmacology ; Protein Conformation/drug effects ; Protein Stability/drug effects ; Receptors, Adrenergic, beta-2/*chemistry/*metabolism ; Viral Proteins/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-11-22
    Description: Despite recent advances in crystallography and the availability of G-protein-coupled receptor (GPCR) structures, little is known about the mechanism of their activation process, as only the beta2 adrenergic receptor (beta2AR) and rhodopsin have been crystallized in fully active conformations. Here we report the structure of an agonist-bound, active state of the human M2 muscarinic acetylcholine receptor stabilized by a G-protein mimetic camelid antibody fragment isolated by conformational selection using yeast surface display. In addition to the expected changes in the intracellular surface, the structure reveals larger conformational changes in the extracellular region and orthosteric binding site than observed in the active states of the beta2AR and rhodopsin. We also report the structure of the M2 receptor simultaneously bound to the orthosteric agonist iperoxo and the positive allosteric modulator LY2119620. This structure reveals that LY2119620 recognizes a largely pre-formed binding site in the extracellular vestibule of the iperoxo-bound receptor, inducing a slight contraction of this outer binding pocket. These structures offer important insights into the activation mechanism and allosteric modulation of muscarinic receptors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4020789/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4020789/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kruse, Andrew C -- Ring, Aaron M -- Manglik, Aashish -- Hu, Jianxin -- Hu, Kelly -- Eitel, Katrin -- Hubner, Harald -- Pardon, Els -- Valant, Celine -- Sexton, Patrick M -- Christopoulos, Arthur -- Felder, Christian C -- Gmeiner, Peter -- Steyaert, Jan -- Weis, William I -- Garcia, K Christopher -- Wess, Jurgen -- Kobilka, Brian K -- GM08311806/GM/NIGMS NIH HHS/ -- NS02847123/NS/NINDS NIH HHS/ -- T32 GM008294/GM/NIGMS NIH HHS/ -- U19 GM106990/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- England -- Nature. 2013 Dec 5;504(7478):101-6. doi: 10.1038/nature12735. Epub 2013 Nov 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, California 94305, USA [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24256733" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Binding Sites ; Cytoplasm/metabolism ; Humans ; Isoxazoles/chemistry/metabolism ; *Models, Molecular ; Protein Binding ; Protein Structure, Tertiary ; Quaternary Ammonium Compounds/chemistry/metabolism ; Receptors, Muscarinic/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-08-08
    Description: Activation of the mu-opioid receptor (muOR) is responsible for the efficacy of the most effective analgesics. To shed light on the structural basis for muOR activation, here we report a 2.1 A X-ray crystal structure of the murine muOR bound to the morphinan agonist BU72 and a G protein mimetic camelid antibody fragment. The BU72-stabilized changes in the muOR binding pocket are subtle and differ from those observed for agonist-bound structures of the beta2-adrenergic receptor (beta2AR) and the M2 muscarinic receptor. Comparison with active beta2AR reveals a common rearrangement in the packing of three conserved amino acids in the core of the muOR, and molecular dynamics simulations illustrate how the ligand-binding pocket is conformationally linked to this conserved triad. Additionally, an extensive polar network between the ligand-binding pocket and the cytoplasmic domains appears to play a similar role in signal propagation for all three G-protein-coupled receptors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4639397/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4639397/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Weijiao -- Manglik, Aashish -- Venkatakrishnan, A J -- Laeremans, Toon -- Feinberg, Evan N -- Sanborn, Adrian L -- Kato, Hideaki E -- Livingston, Kathryn E -- Thorsen, Thor S -- Kling, Ralf C -- Granier, Sebastien -- Gmeiner, Peter -- Husbands, Stephen M -- Traynor, John R -- Weis, William I -- Steyaert, Jan -- Dror, Ron O -- Kobilka, Brian K -- R01GM083118/GM/NIGMS NIH HHS/ -- R37 DA036246/DA/NIDA NIH HHS/ -- R37DA036246/DA/NIDA NIH HHS/ -- T32 GM008294/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Aug 20;524(7565):315-21. doi: 10.1038/nature14886. Epub 2015 Aug 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, California 94305, USA. ; Department of Computer Science, Stanford University, 318 Campus Drive, Stanford, California 94305, USA. ; Institute for Computational and Mathematical Engineering, Stanford University, 475 Via Ortega, Stanford, California 94305, USA. ; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium. ; Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium. ; Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, USA. ; Department of Chemistry and Pharmacy, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany. ; Institut de Genomique Fonctionnelle, CNRS UMR-5203 INSERM U1191, University of Montpellier, F-34000 Montpellier, France. ; Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK. ; Department of Structural Biology, Stanford University School of Medicine, 299 Campus Drive, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26245379" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Animals ; Binding Sites ; Crystallography, X-Ray ; Heterotrimeric GTP-Binding Proteins/chemistry/metabolism ; Mice ; Models, Molecular ; Molecular Dynamics Simulation ; Morphinans/chemistry/metabolism/pharmacology ; Protein Stability/drug effects ; Protein Structure, Tertiary ; Pyrroles/chemistry/metabolism/pharmacology ; Receptor, Muscarinic M2/chemistry ; Receptors, Adrenergic, beta-2/chemistry ; Receptors, Opioid, mu/agonists/*chemistry/*metabolism ; Single-Chain Antibodies/chemistry/pharmacology ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-03-23
    Description: Opium is one of the world's oldest drugs, and its derivatives morphine and codeine are among the most used clinical drugs to relieve severe pain. These prototypical opioids produce analgesia as well as many undesirable side effects (sedation, apnoea and dependence) by binding to and activating the G-protein-coupled micro-opioid receptor (micro-OR) in the central nervous system. Here we describe the 2.8 A crystal structure of the mouse micro-OR in complex with an irreversible morphinan antagonist. Compared to the buried binding pocket observed in most G-protein-coupled receptors published so far, the morphinan ligand binds deeply within a large solvent-exposed pocket. Of particular interest, the micro-OR crystallizes as a two-fold symmetrical dimer through a four-helix bundle motif formed by transmembrane segments 5 and 6. These high-resolution insights into opioid receptor structure will enable the application of structure-based approaches to develop better drugs for the management of pain and addiction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3523197/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3523197/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Manglik, Aashish -- Kruse, Andrew C -- Kobilka, Tong Sun -- Thian, Foon Sun -- Mathiesen, Jesper M -- Sunahara, Roger K -- Pardo, Leonardo -- Weis, William I -- Kobilka, Brian K -- Granier, Sebastien -- DA031418/DA/NIDA NIH HHS/ -- NS028471/NS/NINDS NIH HHS/ -- R01 GM083118/GM/NIGMS NIH HHS/ -- R01 NS028471/NS/NINDS NIH HHS/ -- R21 DA031418/DA/NIDA NIH HHS/ -- England -- Nature. 2012 Mar 21;485(7398):321-6. doi: 10.1038/nature10954.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22437502" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Crystallography, X-Ray ; Ligands ; Mice ; Models, Molecular ; Morphinans/*chemistry/metabolism/pharmacology ; Protein Conformation ; Protein Multimerization ; Receptors, Opioid, mu/*antagonists & inhibitors/*chemistry/metabolism ; Solvents/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2007-10-27
    Description: Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors constitute the largest family of eukaryotic signal transduction proteins that communicate across the membrane. We report the crystal structure of a human beta2-adrenergic receptor-T4 lysozyme fusion protein bound to the partial inverse agonist carazolol at 2.4 angstrom resolution. The structure provides a high-resolution view of a human G protein-coupled receptor bound to a diffusible ligand. Ligand-binding site accessibility is enabled by the second extracellular loop, which is held out of the binding cavity by a pair of closely spaced disulfide bridges and a short helical segment within the loop. Cholesterol, a necessary component for crystallization, mediates an intriguing parallel association of receptor molecules in the crystal lattice. Although the location of carazolol in the beta2-adrenergic receptor is very similar to that of retinal in rhodopsin, structural differences in the ligand-binding site and other regions highlight the challenges in using rhodopsin as a template model for this large receptor family.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2583103/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2583103/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cherezov, Vadim -- Rosenbaum, Daniel M -- Hanson, Michael A -- Rasmussen, Soren G F -- Thian, Foon Sun -- Kobilka, Tong Sun -- Choi, Hee-Jung -- Kuhn, Peter -- Weis, William I -- Kobilka, Brian K -- Stevens, Raymond C -- F32 GM082028/GM/NIGMS NIH HHS/ -- GM075915/GM/NIGMS NIH HHS/ -- NS028471/NS/NINDS NIH HHS/ -- P50 GM062411/GM/NIGMS NIH HHS/ -- P50 GM073197/GM/NIGMS NIH HHS/ -- P50 GM073197-04/GM/NIGMS NIH HHS/ -- R01 GM056169/GM/NIGMS NIH HHS/ -- R01 GM089857/GM/NIGMS NIH HHS/ -- R21 GM075811/GM/NIGMS NIH HHS/ -- U54 GM074961/GM/NIGMS NIH HHS/ -- U54 GM074961-030001/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Nov 23;318(5854):1258-65. Epub 2007 Oct 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17962520" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriophage T4/enzymology ; Binding Sites ; Cell Membrane/chemistry/metabolism ; Cholesterol/chemistry/metabolism ; Crystallization ; Crystallography, X-Ray ; Drug Inverse Agonism ; Humans ; Ligands ; Models, Molecular ; Muramidase/chemistry/metabolism ; Propanolamines/chemistry/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Receptors, Adrenergic, beta-2/*chemistry/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Rhodopsin/chemistry/metabolism ; Static Electricity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2007-10-27
    Description: The beta2-adrenergic receptor (beta2AR) is a well-studied prototype for heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) that respond to diffusible hormones and neurotransmitters. To overcome the structural flexibility of the beta2AR and to facilitate its crystallization, we engineered a beta2AR fusion protein in which T4 lysozyme (T4L) replaces most of the third intracellular loop of the GPCR ("beta2AR-T4L") and showed that this protein retains near-native pharmacologic properties. Analysis of adrenergic receptor ligand-binding mutants within the context of the reported high-resolution structure of beta2AR-T4L provides insights into inverse-agonist binding and the structural changes required to accommodate catecholamine agonists. Amino acids known to regulate receptor function are linked through packing interactions and a network of hydrogen bonds, suggesting a conformational pathway from the ligand-binding pocket to regions that interact with G proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosenbaum, Daniel M -- Cherezov, Vadim -- Hanson, Michael A -- Rasmussen, Soren G F -- Thian, Foon Sun -- Kobilka, Tong Sun -- Choi, Hee-Jung -- Yao, Xiao-Jie -- Weis, William I -- Stevens, Raymond C -- Kobilka, Brian K -- F32 GM082028/GM/NIGMS NIH HHS/ -- NS028471/NS/NINDS NIH HHS/ -- P50 GM073197/GM/NIGMS NIH HHS/ -- P50 GM62411/GM/NIGMS NIH HHS/ -- R01 GM056169/GM/NIGMS NIH HHS/ -- R21 GM075811/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Nov 23;318(5854):1266-73. Epub 2007 Oct 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17962519" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic beta-Agonists/chemistry/metabolism ; Adrenergic beta-Antagonists/chemistry/metabolism ; Amino Acid Sequence ; Bacteriophage T4/enzymology ; Binding Sites ; Cell Line ; Cell Membrane/chemistry/metabolism ; Crystallization ; Crystallography, X-Ray ; Drug Inverse Agonism ; Humans ; Immunoglobulin Fab Fragments/chemistry/metabolism ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Muramidase/chemistry/metabolism ; Propanolamines/chemistry/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Adrenergic, beta-2/*chemistry/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...