ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-06
    Description: We report an analysis of the archival Rossi X-ray Timing Explorer (RXTE) data from the December 2004 hyperflare from SGR 1806-20. In addition to the approx. equal to 90 Hz QPO first discovered by Israel et al., we report the detection of higher frequency oscillations at approx. equal to 150, 625, and 1,835 Hz. In addition to these frequencies there are indications of oscillations at approx. equal to 720, and 2,384 Hz, but with lower significances. The 150 Hz QPO has a width (FWHM) of about 17 Hz, an average amplitude (rms) of 6.5%, and is detected in average power spectra centered on the rotational phase of the strongest peak in the pulse profile. This is approximately half a rotational cycle from the phase at which the 90 Hz QPO is strongly detected. The 625 Hz oscillation was first detected in an average power spectrum from nine successive cycles beginning approximately 180 s after the initial hard spike. It has a width (FWHM) of approx. equal to 2 Hz and an average amplitude (rms) during this interval of 9%. We find a strong detection of the 625 Hz oscillation in a pair of successive rotation cycles beginning about 230 s after the start of the flare. In these cycles we also detect the 1,835 Hz QPO with the 625 Hz oscillation. The rotational phase in which the 625 Hz &PO is detected is similar to that for the 90 Hz QPO, indeed, this feature is seen in the same average power spectrum. During the time the 625 Hz QPO is detected we also confirm the simultaneous presence of 30 and 92 Hz QPOs, first reported by Israel et al. The centroid frequency of the 625 Hz QPO detected with RXTE is within 1 Hz of the M 626 Hz oscillation recently found in RHESSI data from this hyperflare by Watts & Strohmayer, however, the two detections were made in different phase and energy intervals. Nevertheless, we argue that the two results likely represent detections of the same oscillation frequency intrinsic to the source, but we comment on some of the difficulties in making direct comparisons between the RXTE and RHESSI measurements
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: Since May 1981, the National Aeronautics and Space Administration (NASA) has used aircraft to collect cosmic dust (CD) particles from Earth's stratosphere. Specially designed dust collectors are prepared for flight and processed after flight in an ultraclean (Class-100) laboratory constructed for this purpose at the Lyndon B. Johnson Space Center (JSC) in Houston, Texas. Particles are individually retrieved from the collectors, examined and cataloged, and then made available to the scientific community for research. Cosmic dust thereby joins lunar samples and meteorites as an additional source of extraterrestrial materials for scientific study. This catalog summarizes preliminary observations on 468 particles retrieved from collection surfaces L2021 and L2036. These surfaces were flat plate Large Area Collectors (with a 300 cm2 surface area each) which was coated with silicone oil (dimethyl siloxane) and then flown aboard a NASA ER-2 aircraft during a series of flights that were made during January and February of 1994 (L2021) and June 7 through July 5 of 1994 (L2036). Collector L2021 was flown across the entire southern margin of the US (California to Florida), and collector L2036 was flown from California to Wallops Island, VA and on to New England. These collectors were installed in a specially constructed wing pylon which ensured that the necessary level of cleanliness was maintained between periods of active sampling. During successive periods of high altitude (20 km) cruise, the collectors were exposed in the stratosphere by barometric controls and then retracted into sealed storage container-s prior to descent. In this manner, a total of 35.8 hours of stratospheric exposure was accumulated for collector L2021, and 26 hours for collector L2036.
    Keywords: Astrophysics
    Type: NASA/CR-97-112971 , JSC-27897 , NAS 1.26:112971
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-06
    Description: The accreting millisecond pulsar XTE J1814-338 exhibits oscillations at the known spin frequency during Type I X-ray bursts. The properties of the burst oscillations reflect the nature of the thermal asymmetry on the stellar surface. We present an analysis of the variability of the burst oscillations of this source, focusing on three characteristics: fractional amplitude, harmonic content and frequency. Fractional amplitude and harmonic content constrain the size, shape and position of the emitting region, whilst variations in frequency indicate motion of the emitting region on the neutron star surface. We examine both long-term variability over the course of the outburst, and short-term variability during the bursts. For most of the bursts, fractional amplitude is consistent with that of the accretion pulsations, implying a low degree of fuel spread. There is however a population of bursts whose fractional amplitudes are substantially lower, implying a higher degree of fuel spread, possibly forced by the explosive burning front of a precursor burst. For the first harmonic, substantial differences between the burst and accretion pulsations suggest that hotspot geometry is not the only mechanism giving rise to harmonic content in the latter. Fractional amplitude variability during the bursts is low; we can only rule out the hypothesis that the fractional amplitude remains constant at the l(sigma) level for bursts that do not exhibit photospheric radius expansion (PRE). There are no significant variations in frequency in any of the bursts except for the one burst that exhibits PRE. This burst exhibits a highly significant but small (= 0.1Hz) drop in frequency in the burst rise. The timescale of the frequency shift is slower than simple burning layer expansion models predict, suggesting that other mechanisms may be at work.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-20
    Description: We describe a probe-class mission concept that provides an unprecedented view of the X-ray sky, performing timing and 0.2-30 keV spectroscopy over timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) has three key science drivers: (1) measuring the spin distribution of accreting black holes, (2) understanding the equation of state of dense matter, and (3) exploring the properties of the precursors and electromagnetic counterparts of gravitational wave sources. To perform these science investigations, STROBE-X comprises three primary instruments. The first uses an array of lightweight optics (3-m focal length) that concentrate incident photons onto solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates to cover the 0.2-12 keV band. This technology is scaled up from NICER, with enhanced optics to take advantage of the longer focal length of STROBE-X. The second uses large-area collimated silicon drift detectors, developed for ESA's LOFT, to cover the 2-30 keV band. These two instruments each provide an order of magnitude improvement in effective area compared with its predecessor (NICER and RXTE, respectively). Finally, a sensitive sky monitor triggers pointed observations, provides high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with ~20 times the sensitivity of the RXTE ASM, and enables multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis. The STROBE-X mission concept is a rapidly repointable observatory in low-Earth orbit, similar to RXTE or Swift, and will be presented to the 2020 Astrophysics Decadal Survey for consideration as a probe-class mission.
    Keywords: Astrophysics
    Type: MSFC-E-DAA-TN64215 , Meeting of the American Astronomical Society (AAS); Jan 06, 2019 - Jan 10, 2019; Seattle,WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-18
    Description: Many accreting neutron stars, including two of the millisecond pulsars, exhibit high frequency oscillations during Type I X-ray bursts. The properties of the burst oscillations reflect the nature of the thermal asymmetry on the stellar surface. The mechanism that gives rise to the aspzetry, however , remains unclear: possibilities include a hotspot due to uneven fuel distribution, modes of oscillation in the surface layers of the neutron star, or vortices driven by the Coriolis force. I will review some of the latest theory and observations, and present the results of a recent study of variability in the burst oscillations of the millisecond pulsar 51814-338.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: In early October 2008, the Soft Gamma Repeater SGRJ1550 - 5418 (1E1547.0 - 5408, AXJ155052 - 5418, PSR J1550 - 5418) became active, emitting a series of bursts which triggered the Fermi Gamma-ray Burst Monitor (GBM) after which a second especially intense activity period commenced in 2009 January and a third, less active period was detected in 2009 March-April. Here we analyze the GBM data of all the bursts from the first and last active episodes. We performed temporal and spectral analysis for all events and found that their temporal characteristics are very similar to the ones of other SGR bursts, as well the ones reported for the bursts of the main episode (average burst durations 170ms). In addition, we used our sample of bursts to quantify the systematic uncertainties of the GBM location algorithm for soft gamma-ray transients to less than or equal to 8 degrees. Our spectral analysis indicates significant spectral evolution between the first and last set of events. Although the 2008 October events are best fit with a single blackbody function, for the 2009 bursts an Optically Thin Thermal Bremsstrahlung (OTTB) is clearly preferred. We attribute this evolution to changes in the magnetic field topology of the source, possibly due to effects following the very energetic main bursting episode.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN6582
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: The ATIC balloon-born experiment measures the energy spectra of elements from H to Fe in primary cosmic rays from about 100 GeV to 100 TeV. ATIC is comprised of a fully active bismuth germinate calorimeter, a carbon target with embedded scintillator hodoscopes, and a silicon matrix that is used as a main charge detector. The silicon matrix produces good charge resolution for the protons and helium but only a partial resolution for heavier nuclei. In the present paper a charge resolution of ATIC device was improved and backgrounds were reduced in the region from Be to Si by means of the upper layer of the scintillator hodoscope that was used as charge detector together with silicon matrix. Relative fluxes of nuclei B, C, N, O in the energy region from about 20 GeV/nucleon to 200 GeV/nucleon that were obtained from new high-resolution and high-quality charge spectra of nuclei are presented.
    Keywords: Astrophysics
    Type: MSFC-386 , International Cosmic Ray Conference 2007; Jul 03, 2007 - Jul 11, 2007; Merida, Yucatan; Mexico
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-19
    Description: The highest energy measurements of cosmic ray electrons extend just beyond 1 TeV. High energy electrons are of particular interest because energy losses during interstellar propagation insure that they arrive primarily from nearby sources. This may produce observable structure in their spectrum. Further, it is predicted that electrons and positrons result from the annihilation of many exotic particles deposited as dark matter candidates. These electrons may appear as excesses in the cosmic ray electron spectrum from 200 GeV to 1000 GeV. A new long duration balloon experiment, ECAL, is being planned to provide direct cosmic ray electron measurements from approx.50 GeV to 〉1 TeV. To make these measurements ECAL must discriminate strongly against showers from protons and heavier ions. One of the techniques used to make this discrimination may be based on measuring the secondary neutrons produced by events in the instrument. The neutron detector configuration and technique will be discussed along with its expected performance based on Monte Carlo simulations.
    Keywords: Astrophysics
    Type: MSFC-380 , International Cosmic Ray Conference 2007; Jul 03, 2007 - Jul 11, 2007; Merida, Yucatan; Mexico
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: The Advanced Thin Ionization Calorimeter (ATIC) long duration balloon experiment had a successful science flight accumulating 18 days of data (12/02 - 1/03) during a single circumnavigation in Antarctica. ATIC measures the energy spectra of elements from H to Fe in primary cosmic rays using a fully active Bismuth Germanate calorimeter preceded by a carbon target, with embedded scintillator hodoscopes, and a silicon matrix charge detector at the top. Preliminary results from ATIC have been reported in previous conferences. The revised results reported here are derived from a new analysis of the data with improved charge resolution, lower background and revised energy calibration. The raw energy deposit spectra are de-convolved into primary energy spectra and extrapolated to the top of the atmosphere. We compare these revised results to previous data and comment upon the astrophysical interpretation of the results.
    Keywords: Astrophysics
    Type: MSFC-379 , International Cosmic Ray Conference 2007; Jul 03, 2007 - Jul 11, 2007; Merida, Yucatan; Mexico
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-20
    Description: We describe the Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X), a probe-class mission concept that will provide an unprecedented view of the X-ray sky, performing timing and spectroscopy over both a broad energy band (0.2-30 keV) and a wide range of timescales from microseconds to years. STROBE-X comprises two narrow-field instruments and a wide field monitor. The soft or low-energy band (0.2-12 keV) is covered by an array of lightweight optics (3-m focal length) that concentrate incident photons onto small solid-state detectors with CCD-level (85-175 eV) energy resolution, 100 ns time resolution, and low background rates. This technology has been fully developed for NICER and will be scaled up to take advantage of the longer focal length of STROBE-X. The higher-energy band (2-30 keV) is covered by large-area, collimated silicon drift detectors that were developed for the European LOFT mission concept. Each instrument will provide an order of magnitude improvement in effective area over its predecessor (NICER in the soft band and RXTE in the hard band). Finally, STROBE-X offers a sensitive wide-field monitor (WFM), both to act as a trigger for pointed observations of X-ray transients and also to provide high duty-cycle, high time-resolution, and high spectral-resolution monitoring of the variable X-ray sky. The WFM will boast approximately 20 times the sensitivity of the RXTE All-Sky Monitor, enabling multi-wavelength and multi-messenger investigations with a large instantaneous field of view. This mission concept will be presented to the 2020 Decadal Survey for consideration.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN66148 , Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray; 10699; 1069919|SPIE Astronomical Telescopes + Instrumentation; Jun 12, 2018 - Jun 14, 2018; Austin, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...