ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Antarctic Regions  (2)
  • American Association for the Advancement of Science (AAAS)  (2)
  • 2010-2014  (2)
  • 1990-1994
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (2)
Years
  • 2010-2014  (2)
  • 1990-1994
Year
  • 1
    Publication Date: 2013-03-23
    Description: Export of organic carbon from surface waters of the Antarctic Zone of the Southern Ocean decreased during the last ice age, coinciding with declining atmospheric carbon dioxide (CO(2)) concentrations, signaling reduced exchange of CO(2) between the ocean interior and the atmosphere. In contrast, in the Subantarctic Zone, export production increased into ice ages coinciding with rising dust fluxes, thus suggesting iron fertilization of subantarctic phytoplankton. Here, a new high-resolution productivity record from the Antarctic Zone is compiled with parallel subantarctic data over the past million years. Together, they fit the view that the combination of these two modes of Southern Ocean change determines the temporal structure of the glacial-interglacial atmospheric CO(2) record, including during the interval of "lukewarm" interglacials between 450 and 800 thousand years ago.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jaccard, S L -- Hayes, C T -- Martinez-Garcia, A -- Hodell, D A -- Anderson, R F -- Sigman, D M -- Haug, G H -- New York, N.Y. -- Science. 2013 Mar 22;339(6126):1419-23. doi: 10.1126/science.1227545.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Geological Institute, Department of Earth Sciences, ETH Zurich, Zurich, Switzerland. samuel.jaccard@erdw.ethz.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23520109" target="_blank"〉PubMed〈/a〉
    Keywords: Antarctic Regions ; Atmosphere ; *Carbon Cycle ; Carbon Dioxide/*analysis ; Climate ; Geologic Sediments/chemistry ; Ice Cover ; Iron/analysis ; *Oceans and Seas ; Phytoplankton/growth & development/metabolism ; Seawater/chemistry ; Time
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-03-22
    Description: John H. Martin, who discovered widespread iron limitation of ocean productivity, proposed that dust-borne iron fertilization of Southern Ocean phytoplankton caused the ice age reduction in atmospheric carbon dioxide (CO2). In a sediment core from the Subantarctic Atlantic, we measured foraminifera-bound nitrogen isotopes to reconstruct ice age nitrate consumption, burial fluxes of iron, and proxies for productivity. Peak glacial times and millennial cold events are characterized by increases in dust flux, productivity, and the degree of nitrate consumption; this combination is uniquely consistent with Subantarctic iron fertilization. The associated strengthening of the Southern Ocean's biological pump can explain the lowering of CO2 at the transition from mid-climate states to full ice age conditions as well as the millennial-scale CO2 oscillations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martinez-Garcia, Alfredo -- Sigman, Daniel M -- Ren, Haojia -- Anderson, Robert F -- Straub, Marietta -- Hodell, David A -- Jaccard, Samuel L -- Eglinton, Timothy I -- Haug, Gerald H -- New York, N.Y. -- Science. 2014 Mar 21;343(6177):1347-50. doi: 10.1126/science.1246848.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Geological Institute, ETH Zurich, 8092 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24653031" target="_blank"〉PubMed〈/a〉
    Keywords: Antarctic Regions ; Atlantic Ocean ; Atmosphere ; Biomass ; *Carbon Dioxide/analysis ; *Climate ; Cold Temperature ; Foraminifera/chemistry/metabolism ; *Geologic Sediments/chemistry ; *Ice Cover ; *Iron/analysis ; Nitrates/analysis/metabolism ; Nitrogen Isotopes/analysis ; Phytoplankton/growth & development/metabolism ; Seawater/chemistry ; Time
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...