ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (4)
  • Antarctic Intermediate Water  (2)
  • Kuroshio Current  (2)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 31 (2016): 1302–1314, doi:10.1002/2016PA002975.
    Description: Antarctic Intermediate Water is an essential limb of the Atlantic meridional overturning circulation that redistributes heat and nutrients within the Atlantic Ocean. Existing reconstructions have yielded conflicting results on the history of Antarctic Intermediate Water penetration into the Atlantic across the most recent glacial termination. In this study we present leachate, foraminiferal, and detrital neodymium isotope data from three intermediate-depth cores collected from the southern Brazil margin in the South Atlantic covering the past 25 kyr. These results reveal that strong chemical leaching following decarbonation does not extract past seawater neodymium composition in this location. The new foraminiferal records reveal no changes in seawater Nd isotopes during abrupt Northern Hemisphere cold events at these sites. We therefore conclude that there is no evidence for greater incursion of Antarctic Intermediate Water into the South Atlantic during either the Younger Dryas or Heinrich Stadial 1. We do, however, observe more radiogenic Nd isotope values in the intermediate-depth South Atlantic during the mid-Holocene. This radiogenic excursion coincides with evidence for a southward shift in the Southern Hemisphere westerlies that may have resulted in a greater entrainment of radiogenic Pacific-sourced water during intermediate water production in the Atlantic sector of the Southern Ocean. Our intermediate-depth records show similar values to a deglacial foraminiferal Nd isotope record from the deep South Atlantic during the Younger Dryas but are clearly distinct during the Last Glacial Maximum and Heinrich Stadial 1, demonstrating that the South Atlantic remained chemically stratified during Heinrich Stadial 1.
    Description: NERC Grant Numbers: NE/K005235/1, NE/F006047/1; NSF Grant Number: OCE -1335191; FAPESP Grant Number: 2012/17517-3; CAPES Grant Numbers: 1976/2014, 564/2015
    Description: 2017-04-05
    Keywords: Antarctic Intermediate Water ; Neodymium isotopes ; Degalciation ; South Atlantic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Paleoceanography and Paleoclimatology 33 (2018): 1013-1034, doi:10.1029/2018PA003408.
    Description: The chemical composition of benthic foraminifera from marine sediment cores provides information on how glacial subsurface water properties differed from modern, but separating the influence of changes in the origin and end‐member properties of subsurface water from changes in flows and mixing is challenging. Spatial gaps in coverage of glacial data add to the uncertainty. Here we present new data from cores collected from the Demerara Rise in the western tropical North Atlantic, including cores from the modern tropical phosphate maximum at Antarctic Intermediate Water (AAIW) depths. The results suggest lower phosphate concentration and higher carbonate saturation state within the phosphate maximum than modern despite similar carbon isotope values, consistent with less accumulation of respired nutrients and carbon, and reduced air‐sea gas exchange in source waters to the region. An inversion of new and published glacial data confirms these inferences and further suggests that lower preformed nutrients in AAIW, and partial replacement of this still relatively high‐nutrient AAIW with nutrient‐depleted, carbonate‐rich waters sourced from the region of the modern‐day northern subtropics, also contributed to the observed changes. The results suggest that glacial preformed and remineralized phosphate were lower throughout the upper Atlantic, but deep phosphate concentration was higher. The inversion, which relies on the fidelity of the paleoceanographic data, suggests that the partial replacement of North Atlantic sourced deep water by Southern Ocean Water was largely responsible for the apparent deep North Atlantic phosphate increase, rather than greater remineralization.
    Description: National Science Foundation (NSF) Grant Numbers: OCE‐0750880, OCE‐1335191, OCE‐1558341, OCE‐1536380; Woods Hole Oceanographic Institution (WHOI) Grant Numbers: 27007592, 27000808
    Keywords: Glacial Atlantic circulation ; Preformed phosphate ; Remineralized phosphate ; Antarctic Intermediate Water ; Nutrient redistribution ; Tropical phosphate maximum
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 20 (2005): PA4005, doi:10.1029/2004PA001061.
    Description: Detailed deglacial and Holocene records of planktonic δ18O and Mg/Ca–based sea surface temperature (SST) from the Okinawa Trough suggest that at ∼18 to 17 thousand years before present (kyr B.P.), late spring/early summer SSTs were approximately 3°C cooler than today, while surface waters were up to 1 practical salinity unit saltier. These conditions are consistent with a weaker influence of the summer East Asian Monsoon (EAM) than today. The timing of suborbital SST oscillations suggests a close link with abrupt changes in the EAM and North Atlantic climate. A tropical influence, however, may have resulted in subtle decoupling between the North Atlantic and the Okinawa Trough/EAM during the deglaciation. Okinawa Trough surface water trends in the Holocene are consistent with model simulations of an inland shift of intense EAM precipitation during the middle Holocene. Millennial-scale alternations between relatively warm, salty conditions and relatively cold, fresh conditions suggest varying influence of the Kuroshio during the Holocene.
    Description: Funding for this research was provided by NSFC (grants 40106006 and 40206007), SKLLQG (grant LLQG0204), and the NSF (OCE-020776 to DWO). Y.S.'s visit to WHOI was supported via a NSF START Fellowship.
    Keywords: Okinawa Trough ; Deglaciation ; Holocene ; Kuroshio Current ; East Asian monsoon ; Mg/Ca ; Oxygen isotopes ; Foraminifera
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © The Authors, 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Palaeogeography, Palaeoclimatology, Palaeoecology 243 (2007): 378-393, doi:10.1016/j.palaeo.2006.08.016.
    Description: Well-dated, high-resolution records of planktonic foraminifera and oxygen isotopes from two sediment cores, A7 and E017, in the middle Okinawa Trough reveal strong and rapid millennial-scale climate changes since ~18 to 17 thousand years before present (kyr B.P.). Sedimentation rate shows a sudden drop at ~11.2 cal. kyr B.P. due to a rapid rise of sea-level after the Younger Dryas (YD) and consequently submergence of the large continental shelf on the East China Sea (ECS) and the retreat of the estuary providing sediment to the basin. During the last deglaciation, the relative abundance of warm and cold species of planktonic foraminifera fluctuates strongly, consistent with the timing of sea surface temperature (SST) variations determined from Mg/Ca measurements of planktonic foraminifera from one of the two cores. These fluctuations are coeval with climate variation recorded in the Greenland ice cores and North Atlantic sediments, namely Heinrich event 1 (H1), Bølling-Allerød (B/A) and YD events. At about 9.4 kyr B.P., a sudden change in the relative abundance of shallow to deep planktonic species probably indicates a sudden strengthening of the Kuroshio Current in the Okinawa Trough, which was synchronous with a rapid sea-level rise at 9.5-9.2 kyr B.P. in the ECS, Yellow Sea (YS) and South China Sea (SCS). The abundance of planktonic foraminiferal species, together with Mg/Ca based SST, exhibits millennial-scale oscillations during the Holocene, with 7 cold events (at about 1.7, 2.3-4.6, 6.2, 7.3, 8.2, 9.6, 10.6 cal. kyr BP) superimposed on a Holocene warming trend. This Holocene trend, together with centennial-scale SST variations superimposed on the last deglacial trend, suggests that both high and low latitude influences affected the climatology of the Okinawa Trough.
    Description: This study was supported by the National Natural Science Foundation of China (Grant Nos. 40206007, 40106006, 90211022 and 40506027), the Chinese Academy of Sciences innovation program (KZCX3-SW-220), and the NSF (OCE05-29600 to DWO).
    Keywords: Okinawa Trough ; Last deglaciation ; Holocene ; Planktonic foraminifera ; Sedimentation rate ; Kuroshio Current ; Millennial- scale climate changes ; Oxygen isotope
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: image/jpeg
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...