ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-12-18
    Description: Transforming growth factor-beta (TGF-beta) inhibits cell proliferation, and acquisition of TGF-beta resistance has been linked to tumorigenesis. A genetic screen was performed to identify complementary DNAs that abrogated TGF-beta sensitivity in mink lung epithelial cells. Ectopic expression of murine double minute 2 rescued TGF-beta-induced growth arrest in a p53-independent manner by interference with retinoblastoma susceptibility gene product (Rb)/E2F function. In human breast tumor cells, increased MDM2 expression levels correlated with TGF-beta resistance. Thus, MDM2 may confer TGF-beta resistance in a subset of tumors and may promote tumorigenesis by interference with two independent tumor suppressors, p53 and Rb.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, P -- Dong, P -- Dai, K -- Hannon, G J -- Beach, D -- New York, N.Y. -- Science. 1998 Dec 18;282(5397):2270-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9856953" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breast Neoplasms/genetics/metabolism/pathology ; *Carrier Proteins ; *Cell Cycle Proteins ; *Cell Division ; Cell Line ; Cell Transformation, Neoplastic ; *DNA-Binding Proteins ; Drug Resistance, Neoplasm ; E2F Transcription Factors ; Gene Expression ; Genes, Retinoblastoma ; Genes, p53 ; Genetic Vectors ; Humans ; Mice ; Mink ; *Nuclear Proteins ; Phosphorylation ; Proto-Oncogene Proteins/genetics/*physiology ; Proto-Oncogene Proteins c-mdm2 ; Retinoblastoma Protein/metabolism ; Retinoblastoma-Binding Protein 1 ; Signal Transduction ; Transcription Factor DP1 ; Transcription Factors/genetics/metabolism ; Transcription, Genetic ; Transforming Growth Factor beta/*pharmacology/physiology ; Tumor Cells, Cultured ; Tumor Suppressor Protein p53/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1999-02-26
    Description: Although broken chromosomes can induce apoptosis, natural chromosome ends (telomeres) do not trigger this response. It is shown that this suppression of apoptosis involves the telomeric-repeat binding factor 2 (TRF2). Inhibition of TRF2 resulted in apoptosis in a subset of mammalian cell types. The response was mediated by p53 and the ATM (ataxia telangiectasia mutated) kinase, consistent with activation of a DNA damage checkpoint. Apoptosis was not due to rupture of dicentric chromosomes formed by end-to-end fusion, indicating that telomeres lacking TRF2 directly signal apoptosis, possibly because they resemble damaged DNA. Thus, in some cells, telomere shortening may signal cell death rather than senescence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karlseder, J -- Broccoli, D -- Dai, Y -- Hardy, S -- de Lange, T -- GM49046/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Feb 26;283(5406):1321-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY 10021, USA. Cell Genesys, Foster City, CA 94405, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10037601" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviridae/genetics/physiology ; Animals ; *Apoptosis ; Ataxia Telangiectasia/pathology ; Ataxia Telangiectasia Mutated Proteins ; B-Lymphocytes/cytology ; Cell Cycle Proteins ; Cell Line ; Cells, Cultured ; Cloning, Molecular ; DNA Damage ; DNA-Binding Proteins/chemistry/genetics/*physiology ; Genetic Vectors ; Humans ; In Situ Nick-End Labeling ; Mice ; Mitosis ; Phosphorylation ; *Protein-Serine-Threonine Kinases ; Proteins/metabolism ; T-Lymphocytes/cytology ; Telomere/*physiology ; Telomeric Repeat Binding Protein 2 ; Tumor Cells, Cultured ; Tumor Suppressor Protein p53/*metabolism ; Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-08-29
    Description: A single-base pair resolution silkworm genetic variation map was constructed from 40 domesticated and wild silkworms, each sequenced to approximately threefold coverage, representing 99.88% of the genome. We identified ~16 million single-nucleotide polymorphisms, many indels, and structural variations. We find that the domesticated silkworms are clearly genetically differentiated from the wild ones, but they have maintained large levels of genetic variability, suggesting a short domestication event involving a large number of individuals. We also identified signals of selection at 354 candidate genes that may have been important during domestication, some of which have enriched expression in the silk gland, midgut, and testis. These data add to our understanding of the domestication processes and may have applications in devising pest control strategies and advancing the use of silkworms as efficient bioreactors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951477/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951477/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xia, Qingyou -- Guo, Yiran -- Zhang, Ze -- Li, Dong -- Xuan, Zhaoling -- Li, Zhuo -- Dai, Fangyin -- Li, Yingrui -- Cheng, Daojun -- Li, Ruiqiang -- Cheng, Tingcai -- Jiang, Tao -- Becquet, Celine -- Xu, Xun -- Liu, Chun -- Zha, Xingfu -- Fan, Wei -- Lin, Ying -- Shen, Yihong -- Jiang, Lan -- Jensen, Jeffrey -- Hellmann, Ines -- Tang, Si -- Zhao, Ping -- Xu, Hanfu -- Yu, Chang -- Zhang, Guojie -- Li, Jun -- Cao, Jianjun -- Liu, Shiping -- He, Ningjia -- Zhou, Yan -- Liu, Hui -- Zhao, Jing -- Ye, Chen -- Du, Zhouhe -- Pan, Guoqing -- Zhao, Aichun -- Shao, Haojing -- Zeng, Wei -- Wu, Ping -- Li, Chunfeng -- Pan, Minhui -- Li, Jingjing -- Yin, Xuyang -- Li, Dawei -- Wang, Juan -- Zheng, Huisong -- Wang, Wen -- Zhang, Xiuqing -- Li, Songgang -- Yang, Huanming -- Lu, Cheng -- Nielsen, Rasmus -- Zhou, Zeyang -- Wang, Jian -- Xiang, Zhonghuai -- Wang, Jun -- R01 HG003229/HG/NHGRI NIH HHS/ -- R01 HG003229-05/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2009 Oct 16;326(5951):433-6. doi: 10.1126/science.1176620. Epub 2009 Aug 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19713493" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bombyx/classification/*genetics ; Digestive System/metabolism ; Exocrine Glands/metabolism ; Female ; Gene Expression ; *Genes, Insect ; *Genetic Variation ; *Genome, Insect ; INDEL Mutation ; Linkage Disequilibrium ; Male ; Phylogeny ; Polymorphism, Single Nucleotide ; Principal Component Analysis ; Selection, Genetic ; *Sequence Analysis, DNA ; Testis/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-07-23
    Description: 5-methylcytosine (5mC) in DNA plays an important role in gene expression, genomic imprinting, and suppression of transposable elements. 5mC can be converted to 5-hydroxymethylcytosine (5hmC) by the Tet (ten eleven translocation) proteins. Here, we show that, in addition to 5hmC, the Tet proteins can generate 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) from 5mC in an enzymatic activity-dependent manner. Furthermore, we reveal the presence of 5fC and 5caC in genomic DNA of mouse embryonic stem cells and mouse organs. The genomic content of 5hmC, 5fC, and 5caC can be increased or reduced through overexpression or depletion of Tet proteins. Thus, we identify two previously unknown cytosine derivatives in genomic DNA as the products of Tet proteins. Our study raises the possibility that DNA demethylation may occur through Tet-catalyzed oxidation followed by decarboxylation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3495246/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3495246/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ito, Shinsuke -- Shen, Li -- Dai, Qing -- Wu, Susan C -- Collins, Leonard B -- Swenberg, James A -- He, Chuan -- Zhang, Yi -- GM071440/GM/NIGMS NIH HHS/ -- GM68804/GM/NIGMS NIH HHS/ -- P30 ES010126/ES/NIEHS NIH HHS/ -- P30 ES010126-11/ES/NIEHS NIH HHS/ -- P30ES10126/ES/NIEHS NIH HHS/ -- P42 ES005948/ES/NIEHS NIH HHS/ -- P42 ES005948-17/ES/NIEHS NIH HHS/ -- P42ES5948/ES/NIEHS NIH HHS/ -- R01 GM068804/GM/NIGMS NIH HHS/ -- U01 DK089565/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Sep 2;333(6047):1300-3. doi: 10.1126/science.1210597. Epub 2011 Jul 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21778364" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine/*metabolism ; Animals ; Cell Line ; Cytosine/*analogs & derivatives/metabolism ; DNA/*metabolism ; DNA Methylation ; DNA-Binding Proteins/genetics/*metabolism ; Embryonic Stem Cells/metabolism ; Humans ; Mice ; Oxidation-Reduction ; Proto-Oncogene Proteins/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-03-31
    Description: The structure of the brain as a product of morphogenesis is difficult to reconcile with the observed complexity of cerebral connectivity. We therefore analyzed relationships of adjacency and crossing between cerebral fiber pathways in four nonhuman primate species and in humans by using diffusion magnetic resonance imaging. The cerebral fiber pathways formed a rectilinear three-dimensional grid continuous with the three principal axes of development. Cortico-cortical pathways formed parallel sheets of interwoven paths in the longitudinal and medio-lateral axes, in which major pathways were local condensations. Cross-species homology was strong and showed emergence of complex gyral connectivity by continuous elaboration of this grid structure. This architecture naturally supports functional spatio-temporal coherence, developmental path-finding, and incremental rewiring with correlated adaptation of structure and function in cerebral plasticity and evolution.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3773464/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3773464/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wedeen, Van J -- Rosene, Douglas L -- Wang, Ruopeng -- Dai, Guangping -- Mortazavi, Farzad -- Hagmann, Patric -- Kaas, Jon H -- Tseng, Wen-Yih I -- P41 RR-023953/RR/NCRR NIH HHS/ -- P41 RR-14075/RR/NCRR NIH HHS/ -- P41 RR014075/RR/NCRR NIH HHS/ -- P41 RR023953/RR/NCRR NIH HHS/ -- R01 EY002686/EY/NEI NIH HHS/ -- R01 MH064044/MH/NIMH NIH HHS/ -- R01 NS016446/NS/NINDS NIH HHS/ -- R01-MH652456/MH/NIMH NIH HHS/ -- U01 MH093765/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2012 Mar 30;335(6076):1628-34. doi: 10.1126/science.1215280.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Radiology, Massachusetts General Hospital (MGH), Harvard Medical School and the MGH/Massachussetts Institute of Technology, Charlestown, MA 02129, USA. van@nmr.mgh.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22461612" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aotidae ; Axons/ultrastructure ; Biological Evolution ; Brain Mapping ; Callithrix ; Cerebral Cortex/*anatomy & histology/embryology/ultrastructure ; Diffusion Magnetic Resonance Imaging ; Galago ; Humans ; Image Processing, Computer-Assisted ; Imaging, Three-Dimensional ; Macaca mulatta ; *Nerve Fibers ; Neural Pathways/*anatomy & histology/embryology/ultrastructure ; Prosencephalon/anatomy & histology/ultrastructure ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-03-09
    Description: A molecule that treats multiple age-related diseases would have a major impact on global health and economics. The SIRT1 deacetylase has drawn attention in this regard as a target for drug design. Yet controversy exists around the mechanism of sirtuin-activating compounds (STACs). We found that specific hydrophobic motifs found in SIRT1 substrates such as PGC-1alpha and FOXO3a facilitate SIRT1 activation by STACs. A single amino acid in SIRT1, Glu(230), located in a structured N-terminal domain, was critical for activation by all previously reported STAC scaffolds and a new class of chemically distinct activators. In primary cells reconstituted with activation-defective SIRT1, the metabolic effects of STACs were blocked. Thus, SIRT1 can be directly activated through an allosteric mechanism common to chemically diverse STACs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799917/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799917/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hubbard, Basil P -- Gomes, Ana P -- Dai, Han -- Li, Jun -- Case, April W -- Considine, Thomas -- Riera, Thomas V -- Lee, Jessica E -- E, Sook Yen -- Lamming, Dudley W -- Pentelute, Bradley L -- Schuman, Eli R -- Stevens, Linda A -- Ling, Alvin J Y -- Armour, Sean M -- Michan, Shaday -- Zhao, Huizhen -- Jiang, Yong -- Sweitzer, Sharon M -- Blum, Charles A -- Disch, Jeremy S -- Ng, Pui Yee -- Howitz, Konrad T -- Rolo, Anabela P -- Hamuro, Yoshitomo -- Moss, Joel -- Perni, Robert B -- Ellis, James L -- Vlasuk, George P -- Sinclair, David A -- P01 AG027916/AG/NIA NIH HHS/ -- R01 AG019719/AG/NIA NIH HHS/ -- R01 AG028730/AG/NIA NIH HHS/ -- R37 AG028730/AG/NIA NIH HHS/ -- ZIA HL000659-20/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2013 Mar 8;339(6124):1216-9. doi: 10.1126/science.1231097.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23471411" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Amino Acid Motifs ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Cells, Cultured ; Enzyme Activation ; Forkhead Transcription Factors/chemistry/genetics ; Glutamic Acid/chemistry/genetics ; Heterocyclic Compounds with 4 or More Rings/chemistry/pharmacology ; Humans ; Hydrophobic and Hydrophilic Interactions ; Mice ; Molecular Sequence Data ; Myoblasts/drug effects/enzymology ; Protein Structure, Tertiary ; Sirtuin 1/*chemistry/genetics/*metabolism ; Stilbenes/chemistry/*pharmacology ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2002-12-21
    Description: The enzyme alpha1,3-galactosyltransferase (alpha1,3GT or GGTA1) synthesizes alpha1,3-galactose (alpha1,3Gal) epitopes (Galalpha1,3Galbeta1,4GlcNAc-R), which are the major xenoantigens causing hyperacute rejection in pig-to-human xenotransplantation. Complete removal of alpha1,3Gal from pig organs is the critical step toward the success of xenotransplantation. We reported earlier the targeted disruption of one allele of the alpha1,3GT gene in cloned pigs. A selection procedure based on a bacterial toxin was used to select for cells in which the second allele of the gene was knocked out. Sequencing analysis demonstrated that knockout of the second allele of the alpha1,3GT gene was caused by a T-to-G single point mutation at the second base of exon 9, which resulted in inactivation of the alpha1,3GT protein. Four healthy alpha1,3GT double-knockout female piglets were produced by three consecutive rounds of cloning. The piglets carrying a point mutation in the alpha1,3GT gene hold significant value, as they would allow production of alpha1,3Gal-deficient pigs free of antibiotic-resistance genes and thus have the potential to make a safer product for human use.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154759/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154759/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Phelps, Carol J -- Koike, Chihiro -- Vaught, Todd D -- Boone, Jeremy -- Wells, Kevin D -- Chen, Shu-Hung -- Ball, Suyapa -- Specht, Susan M -- Polejaeva, Irina A -- Monahan, Jeff A -- Jobst, Pete M -- Sharma, Sugandha B -- Lamborn, Ashley E -- Garst, Amy S -- Moore, Marilyn -- Demetris, Anthony J -- Rudert, William A -- Bottino, Rita -- Bertera, Suzanne -- Trucco, Massimo -- Starzl, Thomas E -- Dai, Yifan -- Ayares, David L -- DK29961/DK/NIDDK NIH HHS/ -- R01 AM007772/AM/NIADDK NIH HHS/ -- R01 DK029961-19/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2003 Jan 17;299(5605):411-4. Epub 2002 Dec 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉PPL Therapeutics Inc., 1700 Kraft Drive, Blacksburg, VA 24060, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12493821" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Bacterial Toxins/pharmacology ; Cell Line ; Cloning, Molecular ; Cloning, Organism ; DNA, Complementary ; Embryo Transfer ; Enterotoxins/pharmacology ; Female ; Fibroblasts ; Galactosyltransferases/*deficiency/*genetics ; *Gene Targeting ; Genetic Vectors ; HeLa Cells ; Humans ; Immunoglobulin M/blood ; Islets of Langerhans Transplantation ; Mice ; Mice, Knockout ; *Point Mutation ; Pregnancy ; Swine/*genetics ; Transfection ; Transplantation, Heterologous ; Trisaccharides/*analysis/biosynthesis/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-12-14
    Description: We report a draft sequence for the genome of the domesticated silkworm (Bombyx mori), covering 90.9% of all known silkworm genes. Our estimated gene count is 18,510, which exceeds the 13,379 genes reported for Drosophila melanogaster. Comparative analyses to fruitfly, mosquito, spider, and butterfly reveal both similarities and differences in gene content.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xia, Qingyou -- Zhou, Zeyang -- Lu, Cheng -- Cheng, Daojun -- Dai, Fangyin -- Li, Bin -- Zhao, Ping -- Zha, Xingfu -- Cheng, Tingcai -- Chai, Chunli -- Pan, Guoqing -- Xu, Jinshan -- Liu, Chun -- Lin, Ying -- Qian, Jifeng -- Hou, Yong -- Wu, Zhengli -- Li, Guanrong -- Pan, Minhui -- Li, Chunfeng -- Shen, Yihong -- Lan, Xiqian -- Yuan, Lianwei -- Li, Tian -- Xu, Hanfu -- Yang, Guangwei -- Wan, Yongji -- Zhu, Yong -- Yu, Maode -- Shen, Weide -- Wu, Dayang -- Xiang, Zhonghuai -- Yu, Jun -- Wang, Jun -- Li, Ruiqiang -- Shi, Jianping -- Li, Heng -- Li, Guangyuan -- Su, Jianning -- Wang, Xiaoling -- Li, Guoqing -- Zhang, Zengjin -- Wu, Qingfa -- Li, Jun -- Zhang, Qingpeng -- Wei, Ning -- Xu, Jianzhe -- Sun, Haibo -- Dong, Le -- Liu, Dongyuan -- Zhao, Shengli -- Zhao, Xiaolan -- Meng, Qingshun -- Lan, Fengdi -- Huang, Xiangang -- Li, Yuanzhe -- Fang, Lin -- Li, Changfeng -- Li, Dawei -- Sun, Yongqiao -- Zhang, Zhenpeng -- Yang, Zheng -- Huang, Yanqing -- Xi, Yan -- Qi, Qiuhui -- He, Dandan -- Huang, Haiyan -- Zhang, Xiaowei -- Wang, Zhiqiang -- Li, Wenjie -- Cao, Yuzhu -- Yu, Yingpu -- Yu, Hong -- Li, Jinhong -- Ye, Jiehua -- Chen, Huan -- Zhou, Yan -- Liu, Bin -- Wang, Jing -- Ye, Jia -- Ji, Hai -- Li, Shengting -- Ni, Peixiang -- Zhang, Jianguo -- Zhang, Yong -- Zheng, Hongkun -- Mao, Bingyu -- Wang, Wen -- Ye, Chen -- Li, Songgang -- Wang, Jian -- Wong, Gane Ka-Shu -- Yang, Huanming -- Biology Analysis Group -- 1 P50 HG02351/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2004 Dec 10;306(5703):1937-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Southwest Agricultural University, Chongqing Beibei, 400716, China. xiaqy@swau.cq.cn〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15591204" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Animals ; Anopheles/genetics ; Body Patterning/genetics ; Bombyx/*genetics/growth & development/metabolism ; Butterflies/genetics ; Computational Biology ; DNA Transposable Elements ; Drosophila melanogaster/genetics ; Exocrine Glands/metabolism ; Expressed Sequence Tags ; Female ; Genes, Homeobox ; *Genes, Insect ; *Genome ; Immunity, Innate/genetics ; Insect Hormones/genetics ; Insect Proteins/genetics ; Male ; Molecular Sequence Data ; *Sequence Analysis, DNA ; Sequence Homology, Nucleic Acid ; Sex Determination Processes ; Spiders/genetics ; Wings, Animal/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-07-13
    Description: Cell-surface receptors frequently use scaffold proteins to recruit cytoplasmic targets, but the rationale for this is uncertain. Activated receptor tyrosine kinases, for example, engage scaffolds such as Shc1 that contain phosphotyrosine (pTyr)-binding (PTB) domains. Using quantitative mass spectrometry, here we show that mammalian Shc1 responds to epidermal growth factor (EGF) stimulation through multiple waves of distinct phosphorylation events and protein interactions. After stimulation, Shc1 rapidly binds a group of proteins that activate pro-mitogenic or survival pathways dependent on recruitment of the Grb2 adaptor to Shc1 pTyr sites. Akt-mediated feedback phosphorylation of Shc1 Ser 29 then recruits the Ptpn12 tyrosine phosphatase. This is followed by a sub-network of proteins involved in cytoskeletal reorganization, trafficking and signal termination that binds Shc1 with delayed kinetics, largely through the SgK269 pseudokinase/adaptor protein. Ptpn12 acts as a switch to convert Shc1 from pTyr/Grb2-based signalling to SgK269-mediated pathways that regulate cell invasion and morphogenesis. The Shc1 scaffold therefore directs the temporal flow of signalling information after EGF stimulation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zheng, Yong -- Zhang, Cunjie -- Croucher, David R -- Soliman, Mohamed A -- St-Denis, Nicole -- Pasculescu, Adrian -- Taylor, Lorne -- Tate, Stephen A -- Hardy, W Rod -- Colwill, Karen -- Dai, Anna Yue -- Bagshaw, Rick -- Dennis, James W -- Gingras, Anne-Claude -- Daly, Roger J -- Pawson, Tony -- MOP-13466-6849/Canadian Institutes of Health Research/Canada -- England -- Nature. 2013 Jul 11;499(7457):166-71. doi: 10.1038/nature12308.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto M5G 1X5, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23846654" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breast/cytology ; Cell Line ; Epidermal Growth Factor/*metabolism ; Epithelial Cells/cytology ; Extracellular Signal-Regulated MAP Kinases/metabolism ; Feedback, Physiological ; GRB2 Adaptor Protein/deficiency/genetics/metabolism ; Humans ; Mice ; Multiprotein Complexes/chemistry/metabolism ; Phosphorylation ; Protein Binding ; Protein-Tyrosine Kinases ; Proto-Oncogene Proteins c-akt/metabolism ; Rats ; Receptor, Epidermal Growth Factor/agonists/metabolism ; Shc Signaling Adaptor Proteins/deficiency/genetics/*metabolism ; *Signal Transduction ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-10-25
    Description: Food intake increases the activity of hepatic de novo lipogenesis, which mediates the conversion of glucose to fats for storage or use. In mice, this program follows a circadian rhythm that peaks with nocturnal feeding and is repressed by Rev-erbalpha/beta and an HDAC3-containing complex during the day. The transcriptional activators controlling rhythmic lipid synthesis in the dark cycle remain poorly defined. Disturbances in hepatic lipogenesis are also associated with systemic metabolic phenotypes, suggesting that lipogenesis in the liver communicates with peripheral tissues to control energy substrate homeostasis. Here we identify a PPARdelta-dependent de novo lipogenic pathway in the liver that modulates fat use by muscle via a circulating lipid. The nuclear receptor PPARdelta controls diurnal expression of lipogenic genes in the dark/feeding cycle. Liver-specific PPARdelta activation increases, whereas hepatocyte-Ppard deletion reduces, muscle fatty acid uptake. Unbiased metabolite profiling identifies phosphatidylcholine 18:0/18:1 (PC(18:0/18:1) as a serum lipid regulated by diurnal hepatic PPARdelta activity. PC(18:0/18:1) reduces postprandial lipid levels and increases fatty acid use through muscle PPARalpha. High-fat feeding diminishes rhythmic production of PC(18:0/18:1), whereas PC(18:0/18:1) administration in db/db mice (also known as Lepr(-/-)) improves metabolic homeostasis. These findings reveal an integrated regulatory circuit coupling lipid synthesis in the liver to energy use in muscle by coordinating the activity of two closely related nuclear receptors. These data implicate alterations in diurnal hepatic PPARdelta-PC(18:0/18:1) signalling in metabolic disorders, including obesity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4141623/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4141623/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Sihao -- Brown, Jonathan D -- Stanya, Kristopher J -- Homan, Edwin -- Leidl, Mathias -- Inouye, Karen -- Bhargava, Prerna -- Gangl, Matthew R -- Dai, Lingling -- Hatano, Ben -- Hotamisligil, Gokhan S -- Saghatelian, Alan -- Plutzky, Jorge -- Lee, Chih-Hao -- K08 HL105678/HL/NHLBI NIH HHS/ -- K08HL105678/HL/NHLBI NIH HHS/ -- P01 HL048743/HL/NHLBI NIH HHS/ -- R01 DK075046/DK/NIDDK NIH HHS/ -- R01DK075046/DK/NIDDK NIH HHS/ -- R01HL048743/HL/NHLBI NIH HHS/ -- T32 ES016645/ES/NIEHS NIH HHS/ -- England -- Nature. 2013 Oct 24;502(7472):550-4. doi: 10.1038/nature12710.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Genetics and Complex Diseases, Division of Biological Sciences, Harvard School of Public Health, 665 Huntington Avenue, Boston, Massachusetts 02115, USA [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24153306" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyl-CoA Carboxylase/metabolism ; Animals ; *Circadian Rhythm ; Diabetes Mellitus/metabolism ; Fatty Acids/*metabolism ; Gene Expression Regulation ; Homeostasis ; Lipids/*blood ; *Lipogenesis/genetics ; Liver/*metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Muscles/metabolism ; Obesity/metabolism ; PPAR delta/metabolism ; Phosphatidylcholines/blood ; Principal Component Analysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...