ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0886-1544
    Keywords: lipocytes ; liver cirrhosis ; myofibroblasts ; myosin gene ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Fat-storing cells (FSC, lipocytes, or Ito cells) of liver store vitamin A and are the main producers of extracellular matrix in normal and cirrhotic liver. During liver injury, FSC undergo an activation process characterized by a decrease in vitamin A storage and an increase in cell proliferation and extracellular matrix deposition. This activation process also occurs upon culturing FSC from normal liver. In contrast to most cells of nonmuscle origin, activated FSC express two cytoskeletal proteins normally found in muscle, desmin, and smooth muscle α-actin. Based on their strategic perisinusoidal location, it has been hypothesized that FSC play a role in regulating blood flow. However, the nature of the contractile elements involved in this process remains to be determined. In this communication we demonstrate the presence of a sarcomeric myosin in proteins solubilized from liver biomatrix. In addition we demonstrate the expression of sarcomeric myosin heavy chain (MHC) mRNA and protein in two FSC clones derived from a CCl4-cirrhotic rat liver (CFSC). Through cloning the cDNA corresponding to the MHC gene expressed in these cells we demonstrate that it encodes fast IId skeletal MHC and thus represents a marker normally seen in adult muscle. The unexpected expression of an adult stage skeletal muscle molecular motor in FSC from cirrhotic liver is consistent with the proposed specialized contractile capacity of these cells. © 1993 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0730-2312
    Keywords: adenovirus early 1 ; E1 region gene ; human renin promoter ; neuroectodermal tumor ; myc genes ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Adenovirus early 1 (E1) region gene products, including E1A and E1B, are required for transcriptional regulation of viral and cellular promoters in infected and transfected culture cells and for transformation of primary rodent cells. Here, we established a line of transgenic mice carrying the E1 region gene of human adenovirus type 12 under the control of the human renin promoter, in which a neuroectodermal tumor derived from retroperitoneal, olfactory, and/or pelvic regions was heritably developed with varying degrees of incidence and the phenotype was successfully passed through six generations. The transgenes were located in the region E2-E3 bands of chromosome 7 with which no genetic linkage to neuroectodermal tumors was previously demonstrated, and expressed only in the tumors but not in another tissue examined. Notably, in addition to the expression of a neural marker gene N-CAM, the three nuclear oncogenes, c-, L-, and N-myc, were coexpressed in the tumors. These results suggest that E1A and E1B are cooperatively involved in the heritable formation of neuroectodermal tumors associated with co-expression of the three sets of myc family genes.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 57 (1995), S. 384-391 
    ISSN: 0730-2312
    Keywords: cancer-associated hypercalcemia ; parathyroid hormone-related peptide (PTHRP) ; nude rat model ; bone remodeling ; gene regulation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Humoral hypercalcemia of malignancy (HHM) is a common paraneoplastic syndrome mediated by tumor-derived parathyroid hormone-related peptide (PTHRP), which bears structural and functional similarities to PTH. Thus the clinical features of HHM are very similar to those of primary hyperparathyroidism (1° HPT), a prototype of humoral hypercalcemia caused by PTH. On the other hand, HHM syndrome differs from 1° HPT in several aspects, including serum 1,25(OH)2D levels, acid-base balance, and bone remodeling process, the reason of which remains largely unknown. We approached these questions using a unique animal model of HHM, nude rats implanted with PTHRP-overproducing human carcinomas. In this review we will summarize the results and discuss the implications in understanding the disease mechanism.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0730-2312
    Keywords: bone sialoprotein ; gene regulation ; mineralized tissues ; TGF-β1 ; transcription ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Transforming growth factor-β (TGF-β) increases steady-state mRNA levels of several extracellular matrix proteins in mineralized connective tissues. Bone sialoprotein (BSP) is a major constituent of the bone matrix, thought to initiate and regulate the formation of mineral crystals. To determine the molecular pathways of TGF-β1 regulation of bone proteins, we have analyzed the effects of the TGF-β1 on the expression of the BSP in the rat osteosarcoma cell line (ROS 17/2.8). TGF-β1 at 1 ng/ml, increased BSP mRNA levels in ROS 17/2.8 cells ∼8-fold; the stimulation was first evident at 3 hr, reached maximal levels at 12 hr and slowly declined thereafter. Since the stability of the BSP mRNA was not significantly affected by TGF-β1, and nuclear “run-on” transcription analyses revealed only a ∼2-fold increase in the transcription of the BSP gene, most of the increase in BSP mRNA appeared to involve a nuclear post-transcriptional mechanism. Moreover, the effects of TGF-β1 were indirect, since the increase in BSP mRNA was abrogated by cycloheximide (28 μg/ml). To identify the site of transcriptional regulation by TGF-β1, transient transfection analyses were performed using BSP gene promoter constructs linked to a luciferase reporter gene. Constructs that included nt -801 to -426 of the promoter sequence were found to enhance transcriptional activity ∼1.8-fold in cells treated with TGF-β1. Within this sequence, ∼500 nt upstream of the transcription start site, a putative TGF-β activation element (TAE) was identified that contained the 5′-portion of the nuclearfactor-1 (NF-1) canonical sequence (TTGGC) overlapping a consensus sequence for activator protein-2 (AP-2). The functionality of the TAE was shown by an increased binding of a nuclear protein from TGF-β1 stimulated cells in gel mobility shift assays and from the attenuation of TGF-β1-induced luciferase activity when cells were co-transfected with a double-stranded TAE oligonucleotide. Competition gel mobility shift analyses revealed that the nuclear protein that binds to the TAE has similar properties to, but is distinct from, NF-1 nuclear protein. These studies have therefore identified a TGF-β activation element (TAE) in the rat BSP gene promoter that mediates the stimulatory effects of TGF-β1 on BSP gene transcription. J. Cell. Biochem. 65:501-512. © 1997 Wiley-Liss Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 143 (1990), S. 529-533 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The present study was conducted to determine the cell-cycle dependency of various actions of IGF-I in Balb/c 3T3 cells. When autophosphorylation of the IGF-I receptor was determined in [32P]-labelled cells, IGF-I increased radioactivity in a 100 K-Da phosphoprotein, presumably β-subunit of the IGF-I receptor, both in quiesent and in primed competent cells. Likewise, IGF-I stimulated uptake of [3H]deoxyglucose independent of the cell cycle. In contrast, IGF-I increased calcium entry, radioactivity in [3H]diacylglycerol, and [3H]thymidine incorporation in primed competent cells while these reactions were not induced by IGF-I in quiescent cells. The latter three reactions were attenuated when cells were pretreated with pertussis toxin. These results indicate that some, but not all, of the actions of IGF-I are dependent on the cell cycle in Balb/c 3T3 cells. They also suggest that a pertussis-toxin-sensitive G protein may be involved in the cellcycle-dependent actions of IGF-I.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-04-02
    Description: Adiponectin is an anti-diabetic adipokine. Its receptors possess a seven-transmembrane topology with the amino terminus located intracellularly, which is the opposite of G-protein-coupled receptors. Here we provide evidence that adiponectin induces extracellular Ca(2+) influx by adiponectin receptor 1 (AdipoR1), which was necessary for subsequent activation of Ca(2+)/calmodulin-dependent protein kinase kinase beta (CaMKKbeta), AMPK and SIRT1, increased expression and decreased acetylation of peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha), and increased mitochondria in myocytes. Moreover, muscle-specific disruption of AdipoR1 suppressed the adiponectin-mediated increase in intracellular Ca(2+) concentration, and decreased the activation of CaMKK, AMPK and SIRT1 by adiponectin. Suppression of AdipoR1 also resulted in decreased PGC-1alpha expression and deacetylation, decreased mitochondrial content and enzymes, decreased oxidative type I myofibres, and decreased oxidative stress-detoxifying enzymes in skeletal muscle, which were associated with insulin resistance and decreased exercise endurance. Decreased levels of adiponectin and AdipoR1 in obesity may have causal roles in mitochondrial dysfunction and insulin resistance seen in diabetes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Iwabu, Masato -- Yamauchi, Toshimasa -- Okada-Iwabu, Miki -- Sato, Koji -- Nakagawa, Tatsuro -- Funata, Masaaki -- Yamaguchi, Mamiko -- Namiki, Shigeyuki -- Nakayama, Ryo -- Tabata, Mitsuhisa -- Ogata, Hitomi -- Kubota, Naoto -- Takamoto, Iseki -- Hayashi, Yukiko K -- Yamauchi, Naoko -- Waki, Hironori -- Fukayama, Masashi -- Nishino, Ichizo -- Tokuyama, Kumpei -- Ueki, Kohjiro -- Oike, Yuichi -- Ishii, Satoshi -- Hirose, Kenzo -- Shimizu, Takao -- Touhara, Kazushige -- Kadowaki, Takashi -- England -- Nature. 2010 Apr 29;464(7293):1313-9. doi: 10.1038/nature08991. Epub 2010 Mar 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20357764" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases/*metabolism ; Adiponectin/*metabolism ; Animals ; Calcium/*metabolism ; Calcium Signaling ; Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism ; Cell Line ; Glucose/metabolism ; Homeostasis ; Insulin/metabolism ; Insulin Resistance ; Mice ; Mitochondria/*metabolism ; Muscle Cells/cytology/metabolism ; Muscle, Skeletal/cytology/metabolism ; Oocytes/metabolism ; Oxidative Stress ; Physical Conditioning, Animal ; Receptors, Adiponectin/deficiency/*metabolism ; Sirtuin 1/*metabolism ; Trans-Activators/*metabolism ; Transcription Factors ; Xenopus laevis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1992-10-02
    Description: Some individuals infected with hepatitis C virus (HCV) experience multiple episodes of acute hepatitis. It is unclear whether these episodes are due to reinfection with HCV or to reactivation of the original virus infection. Markers of viral replication and host immunity were studied in five chimpanzees sequentially inoculated over a period of 3 years with different HCV strains of proven infectivity. Each rechallenge of a convalescent chimpanzee with the same or a different HCV strain resulted in the reappearance of viremia, which was due to infection with the subsequent challenge virus. The evidence indicates that HCV infection does not elicit protective immunity against reinfection with homologous or heterologous strains, which raises concerns for the development of effective vaccines against HCV.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Farci, P -- Alter, H J -- Govindarajan, S -- Wong, D C -- Engle, R -- Lesniewski, R R -- Mushahwar, I K -- Desai, S M -- Miller, R H -- Ogata, N -- New York, N.Y. -- Science. 1992 Oct 2;258(5079):135-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hepatitis Viruses Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1279801" target="_blank"〉PubMed〈/a〉
    Keywords: Acute Disease ; Aged ; Alanine Transaminase/biosynthesis ; Animals ; Base Sequence ; Hepacivirus/physiology ; Hepatitis Antibodies/biosynthesis ; Hepatitis C/*immunology ; Hepatitis C Antibodies ; Humans ; Immunity, Active ; Longitudinal Studies ; Molecular Sequence Data ; Pan troglodytes ; Polymerase Chain Reaction ; Sequence Homology ; Transcription, Genetic ; Viremia ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-10-16
    Description: We recently reported the discovery and preliminary characterization of Mimivirus, the largest known virus, with a 400-nanometer particle size comparable to mycoplasma. Mimivirus is a double-stranded DNA virus growing in amoebae. We now present its 1,181,404-base pair genome sequence, consisting of 1262 putative open reading frames, 10% of which exhibit a similarity to proteins of known functions. In addition to exceptional genome size, Mimivirus exhibits many features that distinguish it from other nucleocytoplasmic large DNA viruses. The most unexpected is the presence of numerous genes encoding central protein-translation components, including four amino-acyl transfer RNA synthetases, peptide release factor 1, translation elongation factor EF-TU, and translation initiation factor 1. The genome also exhibits six tRNAs. Other notable features include the presence of both type I and type II topoisomerases, components of all DNA repair pathways, many polysaccharide synthesis enzymes, and one intein-containing gene. The size and complexity of the Mimivirus genome challenge the established frontier between viruses and parasitic cellular organisms. This new sequence data might help shed a new light on the origin of DNA viruses and their role in the early evolution of eukaryotes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Raoult, Didier -- Audic, Stephane -- Robert, Catherine -- Abergel, Chantal -- Renesto, Patricia -- Ogata, Hiroyuki -- La Scola, Bernard -- Suzan, Marie -- Claverie, Jean-Michel -- New York, N.Y. -- Science. 2004 Nov 19;306(5700):1344-50. Epub 2004 Oct 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Unite des Rickettsies, Faculte de Medecine, CNRS UMR6020, Universite de la Mediterranee, 13385 Marseille Cedex 05, France. Didier.Raoult@medecine.univ-mrs.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15486256" target="_blank"〉PubMed〈/a〉
    Keywords: Acanthamoeba/virology ; Animals ; Base Composition ; Computational Biology ; DNA Repair/genetics ; DNA Topoisomerases/genetics ; DNA Viruses/classification/*genetics/metabolism ; DNA, Viral/chemistry/genetics ; Enzymes/genetics/metabolism ; Genes, Viral ; *Genome, Viral ; Inteins ; Introns ; Molecular Sequence Data ; Open Reading Frames ; Phylogeny ; Protein Biosynthesis ; Protein Folding ; Proteome ; RNA, Transfer/analysis ; RNA, Viral/analysis ; Sequence Analysis, DNA ; Viral Proteins/chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-11-01
    Description: Adiponectin secreted from adipocytes binds to adiponectin receptors AdipoR1 and AdipoR2, and exerts antidiabetic effects via activation of AMPK and PPAR-alpha pathways, respectively. Levels of adiponectin in plasma are reduced in obesity, which causes insulin resistance and type 2 diabetes. Thus, orally active small molecules that bind to and activate AdipoR1 and AdipoR2 could ameliorate obesity-related diseases such as type 2 diabetes. Here we report the identification of orally active synthetic small-molecule AdipoR agonists. One of these compounds, AdipoR agonist (AdipoRon), bound to both AdipoR1 and AdipoR2 in vitro. AdipoRon showed very similar effects to adiponectin in muscle and liver, such as activation of AMPK and PPAR-alpha pathways, and ameliorated insulin resistance and glucose intolerance in mice fed a high-fat diet, which was completely obliterated in AdipoR1 and AdipoR2 double-knockout mice. Moreover, AdipoRon ameliorated diabetes of genetically obese rodent model db/db mice, and prolonged the shortened lifespan of db/db mice on a high-fat diet. Thus, orally active AdipoR agonists such as AdipoRon are a promising therapeutic approach for the treatment of obesity-related diseases such as type 2 diabetes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Okada-Iwabu, Miki -- Yamauchi, Toshimasa -- Iwabu, Masato -- Honma, Teruki -- Hamagami, Ken-ichi -- Matsuda, Koichi -- Yamaguchi, Mamiko -- Tanabe, Hiroaki -- Kimura-Someya, Tomomi -- Shirouzu, Mikako -- Ogata, Hitomi -- Tokuyama, Kumpei -- Ueki, Kohjiro -- Nagano, Tetsuo -- Tanaka, Akiko -- Yokoyama, Shigeyuki -- Kadowaki, Takashi -- England -- Nature. 2013 Nov 28;503(7477):493-9. doi: 10.1038/nature12656. Epub 2013 Oct 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan [2] Department of Integrated Molecular Science on Metabolic Diseases, 22nd Century Medical and Research Center, The University of Tokyo, Tokyo 113-0033, Japan [3] Department of Molecular Medicinal Sciences on Metabolic Regulation, 22nd Century Medical and Research Center, The University of Tokyo, Tokyo 113-0033, Japan [4].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24172895" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylate Kinase/metabolism ; Adiponectin/metabolism/pharmacology ; Adipose Tissue, White/drug effects/metabolism/pathology ; Administration, Oral ; Animals ; Diabetes Mellitus, Type 2/complications/*drug therapy/metabolism/prevention & ; control ; Diet, High-Fat ; Drug Evaluation, Preclinical ; Dyslipidemias/drug therapy ; Enzyme Activation/drug effects ; Glucose Intolerance/drug therapy ; Inflammation/drug therapy ; Insulin Resistance ; Liver/drug effects/metabolism/pathology ; Longevity/*drug effects ; Mice ; Mitochondria/drug effects/metabolism ; Muscle Fibers, Skeletal/cytology/drug effects ; Muscles/cytology ; Obesity/complications/drug therapy/genetics/*physiopathology ; Oxidative Stress/drug effects ; PPAR alpha/metabolism ; Piperidines/administration & dosage/metabolism/*pharmacology/therapeutic use ; Receptors, Adiponectin/*agonists/deficiency/genetics/metabolism ; Signal Transduction/drug effects ; Small Molecule Libraries/chemistry ; Transcription Factors/biosynthesis ; Triglycerides/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-05-23
    Description: Marine plankton support global biological and geochemical processes. Surveys of their biodiversity have hitherto been geographically restricted and have not accounted for the full range of plankton size. We assessed eukaryotic diversity from 334 size-fractionated photic-zone plankton communities collected across tropical and temperate oceans during the circumglobal Tara Oceans expedition. We analyzed 18S ribosomal DNA sequences across the intermediate plankton-size spectrum from the smallest unicellular eukaryotes (protists, 〉0.8 micrometers) to small animals of a few millimeters. Eukaryotic ribosomal diversity saturated at ~150,000 operational taxonomic units, about one-third of which could not be assigned to known eukaryotic groups. Diversity emerged at all taxonomic levels, both within the groups comprising the ~11,200 cataloged morphospecies of eukaryotic plankton and among twice as many other deep-branching lineages of unappreciated importance in plankton ecology studies. Most eukaryotic plankton biodiversity belonged to heterotrophic protistan groups, particularly those known to be parasites or symbiotic hosts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉de Vargas, Colomban -- Audic, Stephane -- Henry, Nicolas -- Decelle, Johan -- Mahe, Frederic -- Logares, Ramiro -- Lara, Enrique -- Berney, Cedric -- Le Bescot, Noan -- Probert, Ian -- Carmichael, Margaux -- Poulain, Julie -- Romac, Sarah -- Colin, Sebastien -- Aury, Jean-Marc -- Bittner, Lucie -- Chaffron, Samuel -- Dunthorn, Micah -- Engelen, Stefan -- Flegontova, Olga -- Guidi, Lionel -- Horak, Ales -- Jaillon, Olivier -- Lima-Mendez, Gipsi -- Lukes, Julius -- Malviya, Shruti -- Morard, Raphael -- Mulot, Matthieu -- Scalco, Eleonora -- Siano, Raffaele -- Vincent, Flora -- Zingone, Adriana -- Dimier, Celine -- Picheral, Marc -- Searson, Sarah -- Kandels-Lewis, Stefanie -- Tara Oceans Coordinators -- Acinas, Silvia G -- Bork, Peer -- Bowler, Chris -- Gorsky, Gabriel -- Grimsley, Nigel -- Hingamp, Pascal -- Iudicone, Daniele -- Not, Fabrice -- Ogata, Hiroyuki -- Pesant, Stephane -- Raes, Jeroen -- Sieracki, Michael E -- Speich, Sabrina -- Stemmann, Lars -- Sunagawa, Shinichi -- Weissenbach, Jean -- Wincker, Patrick -- Karsenti, Eric -- New York, N.Y. -- Science. 2015 May 22;348(6237):1261605. doi: 10.1126/science.1261605.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. Sorbonne Universites, Universite Pierre et Marie Curie (UPMC) Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. vargas@sb-roscoff.fr pwincker@genoscope.cns.fr karsenti@embl.de. ; CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. Sorbonne Universites, Universite Pierre et Marie Curie (UPMC) Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. ; Department of Ecology, University of Kaiserslautern, Erwin-Schroedinger Street, 67663 Kaiserslautern, Germany. CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. Sorbonne Universites, Universite Pierre et Marie Curie (UPMC) Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. ; Department of Marine Biology and Oceanography, Institute of Marine Science (ICM)-Consejo Superior de Investigaciones Cientificas (CSIC), Passeig Maritim de la Barceloneta 37-49, Barcelona E08003, Spain. ; Laboratory of Soil Biology, University of Neuchatel, Rue Emile-Argand 11, 2000 Neuchatel, Switzerland. ; CNRS, FR2424, Roscoff Culture Collection, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. Sorbonne Universites, UPMC Paris 06, FR 2424, Roscoff Culture Collection, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. ; CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. Sorbonne Universites, Universite Pierre et Marie Curie (UPMC) Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. Ecole Normale Superieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, Paris, F-75005 France. ; Commissariat a l'Energie Atomique et aux Energies Alternatives (CEA), Institut de Genomique, GENOSCOPE, 2 rue Gaston Cremieux, 91000 Evry, France. ; CNRS FR3631, Institut de Biologie Paris-Seine, F-75005, Paris, France. Sorbonne Universites, UPMC Paris 06, Institut de Biologie Paris-Seine, F-75005, Paris, France. Ecole Normale Superieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, Paris, F-75005 France. CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. Sorbonne Universites, Universite Pierre et Marie Curie (UPMC) Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. ; Department of Microbiology and Immunology, Rega Institute, KU Leuven, Herestraat 49, 3000 Leuven, Belgium. Center for the Biology of Disease, VIB, Herestraat 49, 3000 Leuven, Belgium. Department of Applied Biological Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium. ; Department of Ecology, University of Kaiserslautern, Erwin-Schroedinger Street, 67663 Kaiserslautern, Germany. ; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branisovska 31, 37005 Ceske Budejovice, Czech Republic. Faculty of Science, University of South Bohemia, Branisovska 31, 37005 Ceske Budejovice, Czech Republic. ; CNRS, UMR 7093, Laboratoire d'Oceanographie de Villefranche-sur-Mer (LOV), Observatoire Oceanologique, F-06230, Villefranche-sur-Mer, France. Sorbonne Universites, UPMC Paris 06, UMR 7093, LOV, Observatoire Oceanologique, F-06230, Villefranche-sur-Mer, France. ; Commissariat a l'Energie Atomique et aux Energies Alternatives (CEA), Institut de Genomique, GENOSCOPE, 2 rue Gaston Cremieux, 91000 Evry, France. CNRS, UMR 8030, CP5706, Evry, France. Universite d'Evry, UMR 8030, CP5706, Evry, France. ; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branisovska 31, 37005 Ceske Budejovice, Czech Republic. Faculty of Science, University of South Bohemia, Branisovska 31, 37005 Ceske Budejovice, Czech Republic. Canadian Institute for Advanced Research, 180 Dundas Street West, Suite 1400, Toronto, Ontario M5G 1Z8, Canada. ; Ecole Normale Superieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, Paris, F-75005 France. ; MARUM, Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany. CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. Sorbonne Universites, Universite Pierre et Marie Curie (UPMC) Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. ; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy. ; Ifremer, Centre de Brest, DYNECO/Pelagos CS 10070, 29280 Plouzane, France. ; Center for the Biology of Disease, VIB, Herestraat 49, 3000 Leuven, Belgium. Ecole Normale Superieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, Paris, F-75005 France. ; Structural and Computational Biology, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany. Directors' Research, EMBL, Meyerhofstrasse 1, 69117 Heidelberg, Germany. ; Structural and Computational Biology, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany. Max-Delbruck-Centre for Molecular Medicine, 13092 Berlin, Germany. ; CNRS UMR 7232, Biologie Integrative des Organismes Marins (BIOM), Avenue du Fontaule, 66650 Banyuls-sur-Mer, France. Sorbonne Universites Paris 06, Observatoire Oceanologique de Banyuls (OOB) UPMC, Avenue du Fontaule, 66650 Banyuls-sur-Mer, France. ; Aix Marseille Universite, CNRS IGS UMR 7256, 13288 Marseille, France. ; Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan. ; PANGAEA, Data Publisher for Earth and Environmental Science, University of Bremen, Bremen, Germany. MARUM, Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany. ; Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544, USA. National Science Foundation, Arlington, VA 22230, USA. ; Department of Geosciences, Laboratoire de Meteorologie Dynamique (LMD), Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris Cedex 05, France. Laboratoire de Physique des Oceans, Universite de Bretagne Occidentale (UBO)-Institut Universitaire Europeen de la Mer (IUEM), Place Copernic, 29820 Plouzane, France. ; Structural and Computational Biology, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany. ; Commissariat a l'Energie Atomique et aux Energies Alternatives (CEA), Institut de Genomique, GENOSCOPE, 2 rue Gaston Cremieux, 91000 Evry, France. CNRS, UMR 8030, CP5706, Evry, France. Universite d'Evry, UMR 8030, CP5706, Evry, France. vargas@sb-roscoff.fr pwincker@genoscope.cns.fr karsenti@embl.de. ; Directors' Research, EMBL, Meyerhofstrasse 1, 69117 Heidelberg, Germany. Ecole Normale Superieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, Paris, F-75005 France. vargas@sb-roscoff.fr pwincker@genoscope.cns.fr karsenti@embl.de.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25999516" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; DNA Barcoding, Taxonomic ; DNA, Ribosomal/genetics ; Eukaryota/*classification/genetics ; Oceans and Seas ; Phylogeny ; Plankton/*classification/genetics ; Ribosomes/genetics ; Sequence Analysis, DNA ; Sunlight
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...