ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-03-28
    Description: The dynamic glycosylation of serine or threonine residues on nuclear and cytosolic proteins by O-linked beta-N-acetylglucosamine (O-GlcNAc) is abundant in all multicellular eukaryotes. On several proteins, O-GlcNAc and O-phosphate alternatively occupy the same or adjacent sites, leading to the hypothesis that one function of this saccharide is to transiently block phosphorylation. The diversity of proteins modified by O-GlcNAc implies its importance in many basic cellular and disease processes. Here we systematically examine the current data implicating O-GlcNAc as a regulatory modification important to signal transduction cascades.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wells, L -- Vosseller, K -- Hart, G W -- CA42486/CA/NCI NIH HHS/ -- CA83261/CA/NCI NIH HHS/ -- GM20528/GM/NIGMS NIH HHS/ -- HD13563/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2001 Mar 23;291(5512):2376-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205 USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11269319" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylglucosamine/*metabolism ; Animals ; Cell Nucleus/*metabolism ; Cytoplasm/*metabolism ; Glucose/metabolism ; Glycoproteins/metabolism ; Glycosylation ; Humans ; N-Acetylglucosaminyltransferases/metabolism ; Nuclear Proteins/metabolism ; Phosphorylation ; Proteins/*metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-10-03
    Description: Good-genes hypotheses of sexual selection predict that offspring fathered by preferred males should have increased viability resulting from superior genetic quality. Several studies of birds have reported findings consistent with this prediction, but maternal effects are an important confounding variable. Those studies that have attempted to control for maternal effects have only considered differential maternal investment after egg laying. However, female birds differentially deposit testosterone in the eggs, and this influences the development of the chick. This study shows that female birds deposit higher amounts of testosterone and 5alpha-dihydrotestosterone in their eggs when mated to more attractive males.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gil, D -- Graves, J -- Hazon, N -- Wells, A -- New York, N.Y. -- Science. 1999 Oct 1;286(5437):126-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Environmental and Evolutionary Biology, University of St. Andrews, St. Andrews, Fife KY16 9TS, UK. Diego.Gil@u-paris10.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10506561" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Dihydrotestosterone/metabolism ; Egg Yolk/metabolism ; Female ; Male ; Oviposition ; Ovum/*metabolism ; Random Allocation ; *Sexual Behavior, Animal ; Songbirds/genetics/*physiology ; Testosterone/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-02-26
    Description: The hinge region on the Fc fragment of human immunoglobulin G interacts with at least four different natural protein scaffolds that bind at a common site between the C(H2) and C(H3) domains. This "consensus" site was also dominant for binding of random peptides selected in vitro for high affinity (dissociation constant, about 25 nanomolar) by bacteriophage display. Thus, this site appears to be preferred owing to its intrinsic physiochemical properties, and not for biological function alone. A 2.7 angstrom crystal structure of a selected 13-amino acid peptide in complex with Fc demonstrated that the peptide adopts a compact structure radically different from that of the other Fc binding proteins. Nevertheless, the specific Fc binding interactions of the peptide strongly mimic those of the other proteins. Juxtaposition of the available Fc-complex crystal structures showed that the convergent binding surface is highly accessible, adaptive, and hydrophobic and contains relatively few sites for polar interactions. These are all properties that may promote cross-reactive binding, which is common to protein-protein interactions and especially hormone-receptor complexes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉DeLano, W L -- Ultsch, M H -- de Vos, A M -- Wells, J A -- New York, N.Y. -- Science. 2000 Feb 18;287(5456):1279-83.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Group in Biophysics, University of California, San Francisco, CA 94143, USA and Sunesis Pharmaceuticals, 3696 Haven Avenue, Suite C, Redwood City, CA 94063, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10678837" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Binding Sites, Antibody ; Crystallography, X-Ray ; Dimerization ; Evolution, Molecular ; Humans ; Hydrogen Bonding ; Immunoglobulin Fc Fragments/chemistry/*metabolism ; Immunoglobulin G/chemistry/*metabolism ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Peptide Library ; Peptides/chemistry/*metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Fc/chemistry/metabolism ; Rheumatoid Factor/chemistry/metabolism ; Staphylococcal Protein A/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2002-10-05
    Description: Comparison of the genomes and proteomes of the two diptera Anopheles gambiae and Drosophila melanogaster, which diverged about 250 million years ago, reveals considerable similarities. However, numerous differences are also observed; some of these must reflect the selection and subsequent adaptation associated with different ecologies and life strategies. Almost half of the genes in both genomes are interpreted as orthologs and show an average sequence identity of about 56%, which is slightly lower than that observed between the orthologs of the pufferfish and human (diverged about 450 million years ago). This indicates that these two insects diverged considerably faster than vertebrates. Aligned sequences reveal that orthologous genes have retained only half of their intron/exon structure, indicating that intron gains or losses have occurred at a rate of about one per gene per 125 million years. Chromosomal arms exhibit significant remnants of homology between the two species, although only 34% of the genes colocalize in small "microsyntenic" clusters, and major interarm transfers as well as intra-arm shuffling of gene order are detected.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zdobnov, Evgeny M -- von Mering, Christian -- Letunic, Ivica -- Torrents, David -- Suyama, Mikita -- Copley, Richard R -- Christophides, George K -- Thomasova, Dana -- Holt, Robert A -- Subramanian, G Mani -- Mueller, Hans-Michael -- Dimopoulos, George -- Law, John H -- Wells, Michael A -- Birney, Ewan -- Charlab, Rosane -- Halpern, Aaron L -- Kokoza, Elena -- Kraft, Cheryl L -- Lai, Zhongwu -- Lewis, Suzanna -- Louis, Christos -- Barillas-Mury, Carolina -- Nusskern, Deborah -- Rubin, Gerald M -- Salzberg, Steven L -- Sutton, Granger G -- Topalis, Pantelis -- Wides, Ron -- Wincker, Patrick -- Yandell, Mark -- Collins, Frank H -- Ribeiro, Jose -- Gelbart, William M -- Kafatos, Fotis C -- Bork, Peer -- New York, N.Y. -- Science. 2002 Oct 4;298(5591):149-59.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12364792" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anopheles/chemistry/*genetics/physiology ; Biological Evolution ; Chromosome Inversion ; Chromosomes/genetics ; Cluster Analysis ; Dosage Compensation, Genetic ; Drosophila Proteins/chemistry/genetics/physiology ; Drosophila melanogaster/chemistry/*genetics/physiology ; Exons ; Gene Order ; Genes, Insect ; *Genome ; Insect Proteins/chemistry/genetics/physiology ; Introns ; Physical Chromosome Mapping ; Protein Structure, Tertiary ; *Proteome ; Pseudogenes ; Sequence Homology, Nucleic Acid ; Species Specificity ; Synteny
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-01-08
    Description: Archaea, one of three major evolutionary lineages of life, encode proteasomes highly related to those of eukaryotes. In contrast, archaeal ubiquitin-like proteins are less conserved and not known to function in protein conjugation. This has complicated our understanding of the origins of ubiquitination and its connection to proteasomes. Here we report two small archaeal modifier proteins, SAMP1 and SAMP2, with a beta-grasp fold and carboxy-terminal diglycine motif similar to ubiquitin, that form protein conjugates in the archaeon Haloferax volcanii. The levels of SAMP-conjugates were altered by nitrogen-limitation and proteasomal gene knockout and spanned various functions including components of the Urm1 pathway. LC-MS/MS-based collision-induced dissociation demonstrated isopeptide bonds between the C-terminal glycine of SAMP2 and the epsilon-amino group of lysines from a number of protein targets and Lys 58 of SAMP2 itself, revealing poly-SAMP chains. The widespread distribution and diversity of pathways modified by SAMPylation suggest that this type of protein conjugation is central to the archaeal lineage.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2872088/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2872088/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Humbard, Matthew A -- Miranda, Hugo V -- Lim, Jae-Min -- Krause, David J -- Pritz, Jonathan R -- Zhou, Guangyin -- Chen, Sixue -- Wells, Lance -- Maupin-Furlow, Julie A -- 1S10 RR025418-01/RR/NCRR NIH HHS/ -- P41 RR018502/RR/NCRR NIH HHS/ -- P41 RR018502-07/RR/NCRR NIH HHS/ -- R01 GM057498/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Jan 7;463(7277):54-60. doi: 10.1038/nature08659.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20054389" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Archaeal Proteins/chemistry/*metabolism ; Gene Deletion ; Glycylglycine/metabolism ; Haloferax volcanii/genetics/metabolism ; Immunoprecipitation ; Mass Spectrometry ; Molecular Sequence Data ; Nitrogen/metabolism ; Proteasome Endopeptidase Complex/genetics/metabolism ; Sequence Alignment ; Sulfur/metabolism ; Ubiquitination ; Ubiquitins/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1990-12-21
    Description: Human growth hormone (hGH) elicits a diverse set of biological activities including lactation that derives from binding to the prolactin (PRL) receptor. The binding affinity of hGH for the extracellular binding domain of the hPRL receptor (hPRLbp) was increased about 8000-fold by addition of 50 micromolar ZnCl2. Zinc was not required for binding of hGH to the hGH binding protein (hGHbp) or for binding of hPRL to the hPRLbp. Other divalent metal ions (Ca2+, Mg2+, Cu2+, Mn2+, and Co2+) at physiological concentrations did not support such strong binding. Scatchard analysis indicated a stoichiometry of one Zn2+ per hGH.hPRLbp complex. Mutational analysis showed that a cluster of three residues (His18, His21, and Glu174) in hGH and His188 from the hPRLbp (conserved in all PRL receptors but not GH receptors) are probable Zn2+ ligands. This polypeptide hormone.receptor "zinc sandwich" provides a molecular mechanism to explain why nonprimate GHs are not lactogenic and offers a molecular link between zinc deficiency and its association with altered functions of hGH.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cunningham, B C -- Bass, S -- Fuh, G -- Wells, J A -- New York, N.Y. -- Science. 1990 Dec 21;250(4988):1709-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Protein Engineering, Genentech, Inc., South San Francisco, CA 94080.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2270485" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites ; Chlorides/*pharmacology ; Growth Hormone/*metabolism ; Humans ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Oligonucleotide Probes ; Plasmids ; Protein Conformation ; Receptors, Prolactin/drug effects/genetics/*metabolism ; Restriction Mapping ; Zinc/metabolism/*pharmacology ; *Zinc Compounds
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-08-02
    Description: Size-exclusion chromatography and sedimentation equilbrium studies demonstrated that zinc ion (Zn2+) induced the dimerization of human growth hormone (hGH). Scatchard analysis of 65Zn2+ binding to hGH showed that two Zn2+ ions associate per dimer of hGH in a cooperative fashion. Cobalt (II) can substitute for Zn2+ in the hormone dimer and gives a visible spectrum characteristic of cobalt coordinated in a tetrahedral fashion by oxygen- and nitrogen-containing ligands. Replacement of potential Zn2+ ligands (His18, His21, and Glu174) in hGH with alanine weakened both Zn2+ binding and hGH dimer formation. The Zn(2+)-hGH dimer was more stable than monomeric hGH to denaturation in guanidine-HCl. Formation of a Zn(2+)-hGH dimeric complex may be important for storage of hGH in secretory granules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cunningham, B C -- Mulkerrin, M G -- Wells, J A -- New York, N.Y. -- Science. 1991 Aug 2;253(5019):545-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Protein Engineering, Genentech, South San Francisco, CA 94080.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1907025" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Chromatography, Gel ; Edetic Acid/pharmacology ; Growth Hormone/*metabolism ; Humans ; Kinetics ; Macromolecular Substances ; Models, Molecular ; Protein Binding ; Protein Conformation ; Protein Denaturation ; Spectrophotometry ; Zinc/metabolism/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-03-23
    Description: A strategy of iterative site-directed mutagenesis and binding analysis was used to incorporate the receptor-binding determinants from human growth hormone (hGH) into the nonbinding homolog, human prolactin (hPRL). The complementary DNA for hPRL was cloned, expressed in Escherichia coli, and mutated to introduce sequentially those substitutions from hGH that were predicted by alanine-scanning mutagenesis and other studies to be most critical for binding to the hGH receptor from human liver. After seven rounds of site-specific mutagenesis, a variant of hPRL was obtained containing eight mutations with an association constant for the hGH receptor that was increased more than 10,000-fold. This hPRL variant binds one-sixth as strongly as wild-type hGH, but shares only 26 percent overall sequence identity with hGH. These studies show the feasibility of recruiting receptor-binding properties from distantly related and functionally divergent hormones and show that a detailed functional database can be used to guide the design of a protein-protein interface in the absence of direct structural information.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cunningham, B C -- Henner, D J -- Wells, J A -- New York, N.Y. -- Science. 1990 Mar 23;247(4949 Pt 1):1461-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Protein Engineering, Genentech, Inc. South San Francisco, CA 94080.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2321008" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cloning, Molecular ; Growth Hormone/genetics ; Humans ; Molecular Sequence Data ; Mutation ; Plasmids ; Prolactin/genetics/*metabolism ; Protein Conformation ; Receptors, Somatotropin/*metabolism ; Recombinant Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1991-08-23
    Description: The alpha beta and gamma delta T cell receptors for antigen (TCR) delineate distinct T cell populations. TCR alpha beta-bearing thymocytes must be positively selected by binding of the TCR to major histocompatibility complex (MHC) molecules on thymic epithelium. To examine the requirement for positive selection of TCR gamma delta T cells, mice bearing a class I MHC-specific gamma delta transgene (Tg) were crossed to mice with disrupted beta 2 microglobulin (beta 2M) genes. The Tg+beta 2M- (class I MHC-) offspring had Tg+ thymocytes that did not proliferate to antigen or Tg-specific monoclonal antibody and few peripheral Tg+ cells. This is evidence for positive selection within the gamma delta T cell subset.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wells, F B -- Gahm, S J -- Hedrick, S M -- Bluestone, J A -- Dent, A -- Matis, L A -- AI 26847-03/AI/NIAID NIH HHS/ -- AI00602/AI/NIAID NIH HHS/ -- N01-C0-74102/PHS HHS/ -- New York, N.Y. -- Science. 1991 Aug 23;253(5022):903-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biological Carcinogenesis and Development Program, Program Resources, Inc./DynCorp, NCI-Frederick Cancer Research and Development Center, MD 21701-0201.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1831565" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Division ; Epithelium/immunology ; Flow Cytometry ; H-2 Antigens/immunology ; Histocompatibility Antigens Class I/immunology ; Lymph Nodes/cytology ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; Mice, Transgenic ; Receptors, Antigen, T-Cell/immunology/*metabolism ; Spleen/cytology ; T-Lymphocytes/cytology/*immunology ; T-Lymphocytes, Helper-Inducer/cytology/immunology ; T-Lymphocytes, Regulatory/cytology/immunology ; Thymus Gland/immunology ; beta 2-Microglobulin/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1991-11-08
    Description: Human growth hormone (hGH) forms a 1:2 complex with the extracellular domain of its receptor-binding protein (hGHbp) as studied by crystallization, size exclusion chromatography, calorimetry, and a previously undescribed fluorescence quenching assay. These and other experiments with protein engineered variants of hGH have led to the identification of the binding determinants for two distinct but adjacent sites on hGH for the hGHbp, and the data indicated that there are two overlapping binding sites on the hGHbp for hGH. Furthermore, the binding of hGH to the hGHbp occurred sequentially; a first hGHbp molecule bound to site 1 on hGH and then a second hGHbp bound to site 2. Hormone-induced receptor dimerization is proposed to be relevant to the signal transduction mechanism for the hGH receptor and other related cytokine receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cunningham, B C -- Ultsch, M -- De Vos, A M -- Mulkerrin, M G -- Clauser, K R -- Wells, J A -- New York, N.Y. -- Science. 1991 Nov 8;254(5033):821-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Protein Engineering, Genentech, Inc., South San Francisco, CA 94080.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1948064" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Monoclonal ; Binding Sites ; Chromatography, Gel ; Growth Hormone/*metabolism ; Humans ; Kinetics ; Macromolecular Substances ; Models, Structural ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Protein Conformation ; Receptors, Somatotropin/genetics/isolation & purification/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...