ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (11)
  • Acoustics  (7)
  • AIRCRAFT STABILITY AND CONTROL  (4)
  • 1
    Publication Date: 2019-06-28
    Description: The results are presented of flight experiments to determine the lateral-directional stability and control characteristics of the Quiet Short-Haul Research Aircraft (QSRA), an experimental aircraft designed to furnish information on various aerodynamic characteristics of a transport type of airplane that makes use of the upper-surface blown (USB) flap technology to achieve short takeoff and landing (STOL) performance. The flight program designed to acquire the data consisted of maneuvers produced by rudder and control-wheel inputs with the airplane in several configurations that had been proposed for landing approach and takeoff operation. The normal stability augmentation system was not engaged during these maneuvers. Time-history records from the maneuvers were analyzed with a parameter estimation procedure to extract lateral-directional stability and control derivatives. For one aircraft configuration in which the USB flaps were deflected 50 deg, several maneuvers were performed to determine the effects of varying the average angle of attack, varying the thrust coefficient, and setting the airplane's upper surface spoilers at a 13 deg symmetrical bias angle . The effects on the lateral characteristics of deflecting the spoilers were rather small and generally favorable. The data indicate that for one test, conducted at low thrust (a thrust coefficient of 0.38), compared with results from tests at thrust coefficients of 0.77 and larger, there was a significant decrease in the lateral control effectiveness, in the yaw damping and in the directional derivative. The directional derivative was also decreased (by about 30 percent) when the average angle of attack of the test was increased from 3 to 16 deg.
    Keywords: AIRCRAFT STABILITY AND CONTROL
    Type: NASA-TM-102250 , A-90007 , NAS 1.15:102250
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: A flight research program was conducted to assess requirements for flightpath and airspeed control for glide-slope tracking during a precision approach and for flare control, particularly as applied to powered-lift, short takeoff and landing (STOL) aircraft. Ames Research Center's Augmentor Wing Research Aircraft was used to fly approaches on a 7.5 deg glide slope to landings on a 30 X 518 m (100 X 1700 ft) STOL runway. The dominant aircraft response characteristics determined were flightpath overshoot, flightpath-airspeed coupling, and initial flightpath response time. The significant contribution to control of the landing flare using pitch attitude was the short-term flightpath response. The limiting condition for initial flightpath response time for flare control with thrust was also identified. It is possible to define flying-qualities design criteria for glide-slope and flare control based on the aforementioned response characteristics.
    Keywords: AIRCRAFT STABILITY AND CONTROL
    Type: NASA-TP-1911 , NAS 1.60:1911 , A-8645
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: Flight experiments were conducted to evaluate various aerodynamic characteristics of the Quiet Short-Haul Research Aircraft (QSRA), an experimental aircraft that makes use of the upper-surface blown (USB) powered-lift concept. Time-history records from maneuvers performed with the aircraft in landing-approach and take-off configurations (with its stability augmentation system disengaged) were analyzed to obtain longitudinal stability and control derivatives and performance characteristics. The experiments included measuring the aircraft responses to variations in the deflection of direct-lift control spoilers and to thrust variations as well as to elevator inputs. The majority of the results are given for the aircraft in a landing configuration with the USB flaps at 50 degrees. For this configuration, if the static longitudinal stability is defined as the variation of the pitching-moment coefficient with the lift coefficient at a constant thrust coefficient, this stability decreases significantly with increasing angle of attack above 9 degrees. For this configuration, at small and negative angles of attack and high levels of thrust, the elevators and the horizontal stabilizer lost effectiveness owing to incipent stalling, but this occurred only during unsteady maneuvers and for brief time intervals.
    Keywords: AIRCRAFT STABILITY AND CONTROL
    Type: NASA-TP-2965 , A-89133 , NAS 1.60:2965
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: A cooperative flight test campaign between NASA and the U.S. Army was performed from September 2014 to February 2015. The purposes of the testing were to: investigate the effects of altitude variation on noise generation, investigate the effects of gross weight variation on noise generation, establish the statistical variability in acoustic flight testing of helicopters, and characterize the effects of transient maneuvers on radiated noise for a medium-lift utility helicopter. This test was performed at three test sites (0, 4000, and 7000 feet above mean sea level) with two aircraft (AS350 SD1 and EH-60L) tested at each site. This report provides an overview of the test, documents the data acquired and describes the formats of the stored data.
    Keywords: Acoustics
    Type: NASA/TM-2016-219354 , L-20729 , NF1676L-24899
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-20
    Description: The purpose of this study is to characterize auditory filters at low frequencies, defined as below about 100 Hz. Three experiments were designed and executed. They were conducted in the Exterior Effects Room at the NASA Langley Research Center, a psychoacoustic facility designed for presentation of aircraft flyover sounds to groups of test subjects. The first experiment measured 36 subjects hearing threshold for pure tones (at 25, 31.5, 40, 50, 63 and 80 Hz) in quiet conditions. The subjects, male and female, had a wide age range. This experiment allowed the performance of the test facility to be assessed and also provided screened test subjects for participation in subsequent experiments. The second and third experiments used 20 and 10 test subjects, respectively, and measured psychophysical tuning curves (PTCs) that describe auditory filters with center frequencies of approximately 63 and 50 Hz. The latter is assumed to be the lowest (bottom) auditory filter; thus, sounds at frequencies below about 50 Hz are perceived via the lower skirt of this lowest filter. All experiments used an adaptive, three-alternative forced-choice test procedure using either variable level tones or variable level, narrowband noise maskers. Measured PTCs were found to be very similar to other recently published data, both in terms of mean values and intersubject variation, despite different experimental protocols, different test facilities, and a wide range in subjects age.
    Keywords: Acoustics
    Type: NASA/TM?2019-220120 , L-20983 , NF1676L-31935
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: Flight experiments with an augmented jet flap STOL aircraft provided data from which the lateral directional stability and control derivatives were calculated by applying a linear regression parameter estimation procedure. The tests, which were conducted with the jet flaps set at a 65 deg deflection, covered a large range of angles of attack and engine power settings. The effect of changing the angle of the jet thrust vector was also investigated. Test results are compared with stability derivatives that had been predicted. The roll damping derived from the tests was significantly larger than had been predicted, whereas the other derivatives were generally in agreement with the predictions. Results obtained using a maximum likelihood estimation procedure are compared with those from the linear regression solutions.
    Keywords: AIRCRAFT STABILITY AND CONTROL
    Type: NASA-TP-2033 , A-8977 , NAS 1.60:2033
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: This paper presents an overview of a flight test campaign performed at different test sites whose altitudes ranged from 0 to 7000 feet above mean sea level (AMSL) between September 2014 and February 2015. The purposes of this campaign were to: investigate the effects of altitude variation on noise generation, investigate the effects of gross weight variation on noise generation, establish the statistical variability in acoustic flight testing of helicopters, and characterize the effects of transient maneuvers on radiated noise for a medium-lift utility helicopter. In addition to describing the test campaign, results of the acoustic effects of altitude variation for the AS350 SD1 and EH-60L aircraft are presented. Large changes in acoustic amplitudes were observed in response to changes in ambient conditions when the helicopter was flown at constant indicated airspeed and gross weight at the three test sites. However, acoustic amplitudes were found to scale with ambient pressure when flight conditions were defined in terms of the non-dimensional parameters, such as the weight coefficient and effective hover tip Mach number.
    Keywords: Acoustics
    Type: NF1676L-22567 , American Helicopter Society (AHS) Annual Forum; May 17, 2016 - May 19, 2016; West Palm Beach, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Acoustics
    Type: NF1676L-21246 , 2015 Acoustics Technical Working Group Meeting; Apr 21, 2015 - Apr 22, 2015; Hampton, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: The response of auditory filters is central to frequency selectivity of sound by the human auditory system. This is true especially for realistic complex sounds that are often encountered in many applications such as modeling the audibility of sound, voice recognition, noise cancelation, and the development of advanced hearing aid devices. The purpose of this study was to establish the response of low frequency (below 100Hz) auditory filters. Two experiments were designed and executed; the first was to measure subject's hearing threshold for pure tones (at 25, 31.5, 40, 50, 63 and 80 Hz), and the second was to measure the Psychophysical Tuning Curves (PTCs) at two signal frequencies (Fs= 40 and 63Hz). Experiment 1 involved 36 subjects while experiment 2 used 20 subjects selected from experiment 1. Both experiments were based on a 3-down 1-up 3AFC adaptive staircase test procedure using either a variable level narrow-band noise masker or a tone. A summary of the results includes masked threshold data in form of PTCs, the response of auditory filters, their distribution, and comparison with similar recently published data.
    Keywords: Acoustics
    Type: NF1676L-27590 , Meeting of the Acoustical Society of America; Dec 04, 2017 - Dec 08, 2017; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: A new computational technique, Wave Confinement (WC), is extended here to account for sound diffraction around arbitrary terrain. While diffraction around elementary scattering objects, such as a knife edge, single slit, disc, sphere, etc. has been studied for several decades, realistic environments still pose significant problems. This new technique is first validated against Sommerfeld's classical problem of diffraction due to a knife edge. This is followed by comparisons with diffraction over three-dimensional smooth obstacles, such as a disc and Gaussian hill. Finally, comparisons with flight test acoustics data measured behind a hill are also shown. Comparison between experiment and Wave Confinement prediction demonstrates that a Poisson spot occurred behind the isolated hill, resulting in significantly increased sound intensity near the center of the shadowed region.
    Keywords: Acoustics
    Type: NF1676L-25339 , AHS International Annual Forum and Technology Display; May 09, 2017 - May 11, 2017; Fort Worth, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...