ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Man/System Technology and Life Support  (7)
  • AIR TRANSPORTATION AND SAFETY  (6)
  • 1
    Publication Date: 2017-10-02
    Description: Tests of a lightly instrumented two bladed teetering rotor and a heavily instrumented subscale articulated main rotor were conducted in the NASA Lewis Icing Research Tunnel (IRT). The first was an OH-58 tail rotor which had a diameter of 1.575 m and a blade chord of 0.133 m, and was mounted on a NASA designed test rig. The second, a four bladed articulated rotor, had a diameter of 1.83 m with 0.124 m chord blades specifically fabricated for the experiment. This rotor was mounted on a Sikorsky Aircraft Powered Force Model, which enclosed a rotor balance and other measurement systems. The models were exposed to variations in temperature, liquid water content, and medium droplet diameter, and were operated over ranges of advance ratio, shaft angle, tip Mach number (rotor speed), and weight coefficient to determine the effect of these parameters on ice accretion. In addition to strain gage and balance data, the test was documented with still, video, and high speed photography, ice profile tracing, and ice molds. The sensitivity is presented of the model rotors to the test parameter and a comparison of the results to theoretical predictions.
    Keywords: AIR TRANSPORTATION AND SAFETY
    Type: AGARD, Effects of Adverse Weather on Aerodynamics; 25 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: A heavily instrumented sub-scale model of a helicopter main rotor was tested in the NASA Lewis Research Center Icing Research Tunnel (IRT) in September and November 1989. The four-bladed main rotor had a diameter of 1.83 m (6.00 ft) and the 0.124 m (4.9 in) chord rotor blades were specially fabricated for this experiment. The instrumented rotor was mounted on a Sikorsky Aircraft Powered Force Model, which enclosed a rotor balance and other measurement systems. The model rotor was exposed to a range of icing conditions that included variations in temperature, liquid water content, and median droplet diameter, and was operated over ranges of advance ratio, shaft angle, tip Mach number (rotor speed) and weight coefficient to determine the effect of these parameters on ice accretion. In addition to strain gage and balance data, the test was documented with still, video, and high speed photography, ice profile tracings, and ice molds. The sensitivity of the model rotor to the test parameters is given, and the result to theoretical predictions are compared. Test data quality was excellent, and ice accretion prediction methods and rotor performance prediction methods (using published icing lift and drag relationships) reproduced the performance trends observed in the test. Adjustments to the correlation coefficients to improve the level of correlation are suggested.
    Keywords: AIR TRANSPORTATION AND SAFETY
    Type: AIAA PAPER 91-0660
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: An experiment was conducted by the Helicopter Icing Consortium (HIC) in the NASA Lewis Icing Research Tunnel (IRT) in which a 1/6 scale fuselage model of a UH-60A Black Hawk helicopter with a generic rotor was subjected to a wide range of icing conditions. The HIC consists of members from NASA, Bell Helicopter, Boeing Helicopter, McDonnell Douglas Helicopters, Sikorsky Aircraft, and Texas A&M University. Data was taken in the form of rotor torque, internal force balance measurements, blade strain gage loading, and two dimensional ice shape tracings. A review of the ice shape data is performed with special attention given to repeatability and correctness of trends in terms of radial variation, rotational speed, icing time, temperature, liquid water content, and volumetric median droplet size. Moreover, an indepth comparison between the experimental data and the analysis of NASA's ice accretion code LEWICE is given. Finally, conclusions are shown as to the quality of the ice accretion data and the predictability of the data base as a whole. Recommendations are also given for improving data taking technique as well as potential future work.
    Keywords: AIR TRANSPORTATION AND SAFETY
    Type: AIAA PAPER 91-0661
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Description: NASA Johnson Space Center is designing and building a habitat (Bioregenerative Planetary Life Support Systems Test Complex, BIO-Plex) intended for evaluating advanced life support systems developed for long duration missions to the Moon or Mars where all consumables will be recycled and reused. A food system based on raw products obtained from higher plants (such as soybeans, rice and wheat) may be a central feature of a biological ly-based Advanced Life Support System (ALSS). In order to convert raw crops to edible ingredients or food items, multipurpose processing equipment such as an extruder is ideal. Volatile compounds evolved during the manufacturing of these food products may accumulate reaching toxic levels. Additionally, off-odors often dissipated in open-air environments without consequence, may cause significant discomfort in the BIO-Plex. Rice and defatted soy flours were adjusted to 16% moisture and triplicate samples were extruded using a table top single-screw extruder. The extrudate was collected in specially designed Tedlar bags from which air samples could be extracted. The samples were analyzed by GC-MS with special emphasis on compounds with Spacecraft Maximum Allowable Concentrations (SMAC). Results showed a combination of alcohols, aldehydes, ketones and carbonyl compounds in the different flours. Each compound and its SMAC value as well as its impact on the air revitalization system was discussed.
    Keywords: Man/System Technology and Life Support
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The NASA/Mir food system was based on a plan that included 50% U.S. food and 50% Russian food. Using inputs from crew evaluations, nutritional requirements, and analytical data, menus for each Long Duration Mission (LDM) were developed by the U.S. and Russian food specialists. The cosmonaut's planned menus were identical while the astronaut's menu differed slightly, based on personal preferences. Bonus food containers of astronaut's favorite foods were provided to increase variety. Six out of 7 astronauts reported that the menu plan was seldom, if ever, followed. Five out of 7 astronauts ate most of their meals with the other crew members. In most cases, the bonus food containers were not opened until near the end of the mission. All crew members emphasized that variety was critical and that the use of Mir and Shuttle food together added a unique variety to the food system. Three of the 7 Mir astronauts lost significant weight during their stay on Mir. The length of stay varied from 116 to 188 days.
    Keywords: Man/System Technology and Life Support
    Type: Environmental Systems; Jul 12, 1999 - Jul 15, 1999; Denver, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: A comparison is made between airplane productivity and utilization levels derived from commercial airline type schedules which were developed for two subsonic and four supersonic cruise speed aircraft. The cruise speed component is the only difference between the schedules which are based on 1995 passenger demand forecasts. Productivity-to-speed relationships were determined for the three discrete route systems: North Atlantic, Trans-Pacific, and North-South America. Selected combinations of these route systems were also studied. Other areas affecting the productivity-to-speed relationship such as aircraft design range and scheduled turn time were examined.
    Keywords: AIR TRANSPORTATION AND SAFETY
    Type: NASA-CR-145189 , LR-28114
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Description: During a Shuttle flight in the early part of 1999, one of the crewmembers was unable to operate the backrest lever for the light-weight seat in microgravity. It is essential that the crewmembers are able to adjust this back-rest lever, which is titled forward 2 degrees from vertical during launch and then moved backwards to 10 degrees aft of vertical upon reaching orbit. This adjustment is needed to cushion the crewmembers during an inadvertent crash landing situation. The original Shuttle seats, which had seat controls located on the front left and right sides of the seat, were replaced recently with the new light-weight seats. The controls for these new, seats were moved to the night side with one control at the front and the other at the back. While it was uncertain whether the problem encountered was unique to that crewmember or not it was clear to the personnel responsible for maintaining the Shuttle seats that not knowing the cause of the problem posed a safety concern for NASA. Hence the Anthropometry and Biomechanics Facility (ABF) of the Johnson Space Center was requested to perform an evaluation of the seat controls and provide NASA with appropriate recommendations on whether the seat lever positions and operations should be modified. The ABF designed an experiment to investigate the amount of pull force exerted by subjects, wearing an unpressurized or pressurized crew launch escape suit, when controls were placed in the front and back (on the right side) of the light-weight seat. Single-axis load cells were attached to the seat levers, which measured the maximum static pull forces that were exerted by the subjects. Twelve subjects, six male and six female, participated in this study. Each subject was asked to perform the pull test at least three times for each combination of lever position and suit pressure conditions. The results from this study showed that as a whole (or in general), the subjects were able to pull on the lever at the back position with only about half the amount of force that they were able to exert on the lever at the front position. In addition, the results also showed that subjects wearing the pressurized suit were unable to reach the seat lever when it was located at the back. Furthermore, the pull forces on the front lever diminished about 50 % when subjects wore the pressurized suits. Based on these results from this study, it was recommended to NASA that the levers should not be located in the back position. In addition, further investigation is needed on whether the levers at the front of the seat could be modified or adjusted to increase the leverage for crew members wearing pressurized launch/escape suits.
    Keywords: Man/System Technology and Life Support
    Type: Jul 30, 2000 - Aug 04, 2000; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: On-orbit Robotic External Leak Locator (RELL) (i.e., mass spectrometer and ion gauge) measurements on the International Space Station (ISS) are presented to show the detection of recurring Environmental Control and Life Support System (ECLSS) vents at multiple ISS locations and RELL pointing directions. The path of ECLSS effluents to the RELL detectors is not entirely obvious at some locations, but the data indicates that diffuse gas-surface reflection or scattering resulting from plume interaction with vehicle surfaces is responsible. RELL was also able to confirm the ISS ECLSS constituents and distinguish them from the ammonia leak based on the ion mass spectra and known venting times during its operation to locate a leak in the ISS port-side External Active Thermal Control System (EATCS) coolant loop.
    Keywords: Man/System Technology and Life Support
    Type: JSC-E-DAA-TN59670 , SPIE Optical Engineering + Applications; Aug 19, 2018 - Aug 23, 2018; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-17
    Description: Design and Human Engineering (HE) processes strive to ensure that the human-machine interface is designed for optimal performance throughout the system life cycle. Each component can be tested and assessed independently to assure optimal performance, but it is not until full integration that the system and the inherent interactions between the system components can be assessed as a whole. HE processes (which are defining/app lying requirements for human interaction with missions/systems) are included in space flight activities, but also need to be included in ground activities and specifically, ground facility testbeds such as Bio-Plex. A unique aspect of the Bio-Plex Facility is the integral issue of Habitability which includes qualities of the environment that allow humans to work and live. HE is a process by which Habitability and system performance can be assessed.
    Keywords: Man/System Technology and Life Support
    Type: ICES; Jul 12, 1999 - Jul 15, 1999; Denver, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Seeing is critical to human performance. Lighting is critical for seeing. Therefore, lighting is critical to human performance. This is common sense, and here on earth, it is easily taken for granted. However, on orbit, because the sun will rise or set every 45 minutes on average, humans working in space must cope with extremely dynamic lighting conditions. Contrast conditions of harsh shadowing and glare is also severe. The prediction of lighting conditions for critical operations is essential. Crew training can factor lighting into the lesson plans when necessary. Mission planners can determine whether low-light video cameras are required or whether additional luminaires need to be flown. The optimization of the quantity and quality of light is needed because of the effects on crew safety, on electrical power and on equipment maintainability. To address all of these issues, an illumination modeling system has been developed by the Graphics Research and Analyses Facility (GRAF) and Lighting Environment Test Facility (LETF) in the Space Human Factors Laboratory at NASA Johnson Space Center. The system uses physically based ray tracing software (Radiance) developed at Lawrence Berkeley Laboratories, a human factors oriented geometric modeling system (PLAID) and an extensive database of humans and environments. Material reflectivity properties of major surfaces and critical surfaces are measured using a gonio-reflectometer. Luminaires (lights) are measured for beam spread distribution, color and intensity. Video camera performances are measured for color and light sensitivity. 3D geometric models of humans and the environment are combined with the material and light models to form a system capable of predicting lighting conditions and visibility conditions in space.
    Keywords: Man/System Technology and Life Support
    Type: CAES 99: Computer-Aided Ergonomics and Safety Meeting; May 19, 1999 - May 21, 1999; Barcelona; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...