ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Copernicus Publications on behalf of the European Geosciences Union
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geoscientific Model Development 10 (2017): 2833-2848, doi:10.5194/gmd-10-2833-2017.
    Description: A coordinated set of Arctic modelling experiments, which explore how the Arctic responds to changes in external forcing, is proposed. Our goal is to compute and compare "climate response functions" (CRFs) – the transient response of key observable indicators such as sea-ice extent, freshwater content of the Beaufort Gyre, etc. – to abrupt "step" changes in forcing fields across a number of Arctic models. Changes in wind, freshwater sources, and inflows to the Arctic basin are considered. Convolutions of known or postulated time series of these forcing fields with their respective CRFs then yield the (linear) response of these observables. This allows the project to inform, and interface directly with, Arctic observations and observers and the climate change community. Here we outline the rationale behind such experiments and illustrate our approach in the context of a coarse-resolution model of the Arctic based on the MITgcm. We conclude by summarizing the expected benefits of such an activity and encourage other modelling groups to compute CRFs with their own models so that we might begin to document their robustness to model formulation, resolution, and parameterization.
    Description: The experiments described here were made possible by support from the NSF program in Arctic Research, award number 1603557. Jeffery Scott received support from the Joint Program on the Science and Policy of Global Change, which is funded by a number of federal agencies and a consortium of industrial and foundation sponsors.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: The Beaufort Gyre Freshwater Experiment (BGFE) observational program was designed to measure the freshwater content of the upper ocean and sea ice in the Beaufort Gyre of the Arctic Ocean using bottom-tethered moorings, drifting buoys, and hydrographic stations. The mooring program required the development of a safe and efficient deployment method by which the subsurface system could be deployed in waters surrounded by sea ice. This report documents the mooring procedure used to deploy the three BGFE moorings from the CCGS Louis S. St- Laurent, during the Joint Western Arctic Climate Study – 2003 (August 6 – September 7). The technical details of the instrumentation attached to each mooring and the specific deployment parameters are described. Specifics pertaining to the deployment of four surface-tethered drifters in the ice are also documented.
    Description: Funding was provided by the National Science Foundation under Grant Number OPP-0230184.
    Keywords: Arctic operations ; Mooring deployments ; Beaufort Gyre Freshwater Experiment ; Louis S. St. Laurent (Ship) Cruise JWACS
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: 28109513 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Situated beneath the Arctic perennial ice pack, the principal components of the Beaufort Gyre Observing System are three deep-ocean bottom-tethered moorings with CTD and velocity profilers, upward looking sonars for ice draft measurements, and bottom pressure recorders. A major goal of this project is to investigate basin-scale mechanisms regulating freshwater and heat content in the Arctic Ocean and particularly in the Beaufort Gyre throughout several complete annual cycles. The methods of recovering and re-deploying the 3800 m long instrumented moorings from the Canadian Coast Guard Icebreaker Louis S. St. Laurent in August 2004 are described. In ice-covered regions, deployments must be conducted anchor-first, so heavier wire rope and hardware must be incorporated into the mooring design. Backup buoyancy at the bottom of the mooring is advised for backup recovery should intermediate lengths of the mooring system get tangled under ice floes during recovery. An accurate acoustic survey to determine the exact location of the mooring, adequate ice conditions, and skilled ship maneuvering are all essential requirements for a successful mooring recovery. Windlass (or capstan) procedures could be used for the recovery, but a traction winch arrangement is recommended.
    Description: Funding was provided by the National Science Foundation under Grant Number OPP-0230184 and Woods Hole Oceanographic Insitution’s Ocean and Climate Change Institute.
    Keywords: Arctic operations ; Mooring deployments ; Beaufort Gyre Observing System ; Louis S. St. Laurent (Ship) Cruise JWACS
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: 2040937 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: An automated, easily-deployed Ice-Tethered Profiler (ITP) has been developed for deployment on perennial sea ice in polar oceans to measure changes in upper ocean temperature and salinity in all seasons. The ITP system consists of three components: a surface instrument that sits atop an ice floe, a weighted, plastic-jacketed wire-rope tether of arbitrary length (up to 800 m) suspended from the surface instrument, and an instrumented underwater unit that profiles up and down the wire tether. The profiling underwater unit is similar in shape and dimension to an ARGO float except that the float's variable-buoyancy system is replaced with a traction drive unit. Deployment of ITPs may be conducted either from ice caps or icebreakers, utilizing a self contained tripod/winch system that requires no power. Careful selection of an appropriate multiyear ice floe is needed to prolong the lifetime of the system (up to 3 years depending on the profiling schedule). Shortly after deployment, each ITP begins profiling the water column at its programmed sampling interval. After each acquired temperature and salinity profile, the underwater unit (PROCON) transfers the data and engineering files using an inductive modem to the surface controller (SURFCON). SURFCON also accumulates battery voltages, buoy temperature, and locations from GPS at specified intervals in status files, and queues that information for transmission at the start of each new day. At frequent intervals, an Iridium satellite transceiver in the surface package calls and transmits queued status and CTD data files onto a WHOI logger computer, which are subsequently processed and displayed in near-real time at http://www.whoi.edu/itp. In 2004 and 2005, three ITP prototypes were deployed in the Arctic Ocean. Each system was programmed with accelerated sampling schedules of multiple one-way traverses per day between 10 and 750-760 m depth in order to quickly evaluate endurance and component fatigue. Two of the ITPs are continuing to function after more than 10 months and 1200 profiles. Larger motor currents are observed at times of fast ice floe motion when larger wire angles develop and drag forces on the profiler are increased. The CTD profile data so far obtained document interesting spatial variations in the major water masses of the Beaufort Gyre, show the double-diffusive thermohaline staircase that lies above the warm, salty Atlantic layer, and many mesoscale eddys. Deployed together with CRREL Ice Mass Balance (IMB) buoys, these ITP systems also operate as part of an Ice Based Observatory (IBO). Data returned from an array of IBOs within an Arctic Observing Network will provide valuable real time observations, support studies of ocean processes, and facilitate numerical model initialization and validation.
    Description: Funding was provided by the National Science Foundation under Contract Nos. OCE-0324233 and ARC-0519899.
    Keywords: Arctic instrumentation ; Ocean profiler ; Ice-based observatory ; Louis S. St. Laurent (Ship) Cruise
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: 4139620 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...