ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
  • 3
  • 4
    Publication Date: 2020-11-02
    Description: Pteropods are important organisms in high-latitude ecosystems, and they are expected to severely suffer from climate change in the near future. In this study, sedimentation patterns of two pteropod species, the polar Limacina helicina and the subarctic boreal L. retroversa, are presented. Time series data received by moored sediment traps at the Long-Term Ecological Research (LTER) Observatory HAUSGARTEN in eastern Fram Strait were analyzed during the years 2008 to 2012. Results were derived from four different deployment depths (~200, 1,250, 2,400, and 2,550 m) at two different sites (79°N 04°20′E; 79°43′N 04°30′E). A species-specific sedimentation pattern was present at all depths and at both sites showing maximal flux rates during September/October for L. helicina and in November/December for L. retroversa. The polar L. helicina was outnumbered by L. retroversa (55–99 %) at both positions and at all depths supporting the recently observed trend toward the dominance of the subarctic boreal species. The largest decrease in pteropod abundance occurred within the mesopelagic zone (~200–1,250 m), indicating loss via microbial degradation and grazing. Pteropod carbonate (aragonite) amounted up to ~75 % of the total carbonate flux at 200 m and 2–13 % of the aragonite found in the shallow traps arrived at the deep sediment traps (~160 m above the seafloor), revealing the significance of pteropods in carbonate export at Fram Strait. Our results emphasize the relevance and the need for continuation of long-term studies to detect and trace changes in pteropod abundances and community composition and thus in the vertical transport of aragonite.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Springer
    In:  In: The Northern North Atlantic: A Changing Environment. , ed. by Schäfer, P., Ritzrau, W., Schlüter, M. and Thiede, J. Springer, Berlin, Germany, pp. 69-79.
    Publication Date: 2020-04-01
    Description: A decade of particle flux measurements providse the basis for a comparison of the eastem and westem provinces ofthe Nordic Seas. Ice-related physical and biological seasonality as well as pelagic settings jointly control fluxes in the westem Polar Province which receives southward flowing water of Polar origin. Sediment trap data from this realm highlight a predominantly physical flux control which leads to exports of siliceous particles within the biological marginal ice zone as a prominent contributor. In the northward flowing waters of the eastem Atlantic Province, feeding Strategie . life histories and the succession of dominant mesozooplankters (copepods and pteropods) are central in controlling fluxes. Furthermore, more calcareous matter is exported here with a shift in flux seasonality towards surnrner/autumn. Dominant pelagic processes modeled numerically as to their impact on annual organic carbon exports for both provinces confirrn that interannual flux variability is related to changes in the respective control mechanisms. Annual organic carbon exports are strikingly similar in the Polar and Atlantic Provinces (2.4 and 2.9 g m-2 y-1 at 500 m depth). despite major differences in flux control. The Polar and Atlantic Provinces. however, can be distinguished according to annual fluxes of opal ( l.4 and 0.6 g m-2 y-1) and carbonate (6.8 and 10.4 g m-2 y-1). lnterannual variability may blur this in single years. Thus. it is vital to use multi-annual data sets when including particle exports in general biogeochemical province descriptions. Vertical flux profiles (collections from 500 m, l000 min both provinces and 300-600 m above the seafloor deviate from the general vertical decline of fluxes due to particle degradation during sinking. At depths 〉 1000 m secondary fluxes (laterally advected/re uspended particles) are often juxtaposed to primary (pelagic) fluxes, a pattem which is most prominent in the Atlantic Province. Spatial variability within theAtlantic Province remains poorly understood. and the same holds true for interannual variability. No proxies are at hand for this province to quantitatively relate fluxes to physical or biological pelagic properties. For the easonally ice-covered Polar Province a robust relationship exists between particle export and ambient ice-regime (Ramseier et al. this volume; Ramseier et al. 1999). Spatial flux pattems may be differentiated and interannual variability can be analyzed in this manner to improve our ability to couple pelagic export pattems with benthic and geochemical sedimentary processes in seasonally ice-covered seas.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-02-10
    Description: Pteropods are important organisms in highlatitude ecosystems, and they are expected to severely suffer from climate change in the near future. In this study, sedimentation patterns of two pteropod species, the polar Limacina helicina and the subarctic boreal L. retroversa, are presented. Time series data received by moored sediment traps at the Long-Term Ecological Research (LTER) Observatory HAUSGARTEN in eastern Fram Strait were analyzed during the years 2008 to 2012. Results were derived from four different deployment depths (200, 1,250, 2,400, and 2,550 m) at two different sites (79°N 04'200E; 79°430N 04'300E). A species-specific sedimentation pattern was present at all depths and at both sites showing maximal flux rates during September/October for L. helicina and in November/December for L. retroversa. The polar L. helicina was outnumbered by L. retroversa (55–99 %) at both positions and at all depths supporting the recently observed trend toward the dominance of the subarctic boreal species. The largest decrease in pteropod abundance occurred within the mesopelagic zone (*200–1,250 m), indicating loss via microbial degradation and grazing. Pteropod carbonate (aragonite) amounted up to *75 % of the total carbonate flux at 200 m and 2–13 % of the aragonite found in the shallow traps arrived at the deep sediment traps (*160 m above the seafloor), revealing the significance of pteropods in carbonate export at Fram Strait. Our results emphasize the relevance and the need for continuation of long-term studies to detect and trace changes in pteropod abundances and community composition and thus in the vertical transport of aragonite.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PERGAMON-ELSEVIER SCIENCE LTD
    In:  EPIC3Deep-Sea Research Part I-Oceanographic Research Papers, PERGAMON-ELSEVIER SCIENCE LTD, 103, pp. 86-100, ISSN: 0967-0637
    Publication Date: 2016-11-03
    Description: Current meters measured temperature and velocity on 12 moorings from 1997 to 2014 in the deep Fram Strait between Svalbard and Greenland at the only deep passage from the Nordic Seas to the Arctic Ocean. The sill depth in Fram Strait is 2545 m. The observed temperatures vary between the colder Greenland Sea Deep Water and the warmer Eurasian Basin Deep Water. Both end members show a linear warming trend of 0.11±0.02°C/decade (GSDW) and 0.05±0.01°C/decade (EBDW) in agreement with the deep water warming observed in the basins to the north and south. At the current warming rates, GSDW and EBDW will reach the same temperature of -0.71°C in 2020. The deep water on the approximately 40 km wide plateau near the sill in Fram Strait is a mixture of the two end members with both contributing similar amounts. This water mass is continuously formed by mixing in Fram Strait and subsequently exported out of Fram Strait. Individual measurements are approximately normally distributed around the average of the two end members. Meridionally, the mixing is confined to the plateau region. Measurements less than 20 km to the north and south have properties much closer to the properties in the respective basins (Eurasian Basin and Greenland Sea) than to the mixed water on the plateau. The temperature distribution around Fram Strait indicates that the mean flow cannot be responsible for the deep water exchange across the sill. Rather, a coherence analysis shows that energetic mesoscale flows with periods of approximately 1-2 weeks advect the deep water masses across Fram Strait. These flows appear to be barotropically forced by upper ocean mesoscale variability. We conclude that these mesoscale flows make Fram Strait a hot spot of deep water mixing in the Arctic Mediterranean. The fate of the mixed water is not clear, but after the 1990s, it does not reflect the properties of Norwegian Sea Deep Water. We propose that it currently mostly fills the deep Greenland Sea.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PERGAMON-ELSEVIER SCIENCE LTD
    In:  EPIC3Progress In Oceanography, PERGAMON-ELSEVIER SCIENCE LTD, 109, pp. 70-77, ISSN: 0079-6611
    Publication Date: 2014-10-07
    Description: As part of the HAUSGARTEN long-term observatory, sediment trap deployments were carried out before, during, and after the anomalously warm Atlantic Water inflow observed from 2005 to 2007 in the eastern Fram Strait. Downward export of particulate organic carbon (POC), zooplankton fecal pellet carbon (FPC), and biogenic particulate silica (bPSi) were measured from August 2002 to June 2003 and from July 2004 to July 2008 to indirectly assess the impact of the warm anomaly on phytoplankton and zooplankton communities in the region. Lower and less frequent bPSi fluxes were observed during most of the warm anomaly period, reflecting a shift in phytoplankton community composition towards dominance of small-sized phytoplankton under warmer conditions. Lower FPC fluxes observed concurrently with the lower bPSi fluxes may indicate a decrease in fecal pellet production due to changing feeding conditions. In addition, the export of smaller fecal pellets in fall 2005 and spring 2006 suggests a dominance of smaller zooplankton during the warm anomaly. Nonetheless, bPSi and FPC export always increased in the presence of ice cover in the area above the sediment trap, even during the warm anomaly period, suggesting that sea ice is a key factor influencing the frequency of export events in the eastern Fram Strait. The scarcity of ice over the sampling area in 2005 and 2006 may partly be due to the warm anomaly, although solar radiation and ice drift due to wind stress also govern ice cover extent in the region. Overall, the warm anomaly resulted in a shift in the composition of the export fluxes when associated with an absence of ice cover in the eastern Fram Strait.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...