Skip to main content
Log in

Relationships between primary production and vertical particle export at the Atlantic-Arctic boundary (Fram Strait, HAUSGARTEN)

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The lack of extended dataset has so far prevented an inclusive understanding of the long-term relationships between primary production (PP) and vertical export in the Arctic Ocean. It is urgent to investigate these connections as Arctic ecosystems are on the verge of climate-related shifts, which could be caused by the combined effects of increase in Pacific and Atlantic inflow, climate warming, and sea ice decline. For a period of 6 years we investigated the degree of coupling between PP and export by making use of modelled PP rates and vertical particle fluxes collected with sediment traps moored at ~300 m depth in the eastern Fram Strait. Our analyses indicate that total and new simulated PP averaged for different areas centered on the mooring location (5–200 km radius) explain at best 20–44% of the observed biogenic particle fluxes at 300 m, when applying extended time-lags (55–90 days) between PP and vertical fluxes. Based on this phasing, we define a conceptual framework that presents the temporal dimension as a prime determinant of the maximum strength of the PP-export coupling at a given depth. Our results support that planktonic food webs in the Fram Strait process heavily biogenic material in the epipelagic zone, but we further suggest that Atlantic-Arctic water interactions induce a particular ecological setting responsible for the extended turn-over. In conclusion, we hypothesize that global warming could promote a transition toward a more retentive ecosystem in the Fram Strait region despite the likely increase of pelagic PP in the Arctic Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arrigo KR, van Dijken G, Pabi S (2008) Impact of a shrinking Arctic ice cover on marine primary production. Geophys Res Lett 35:L19603

    Article  Google Scholar 

  • Bauerfeind E, Bodungen BV, Arndt K, Koeve W (1994) Particle flux, and composition of sedimenting matter, in the Greenland Sea. J Mar Syst 5:411–423

    Article  Google Scholar 

  • Bauerfeind E, Nöthig E-M, Beszczynska A, Fahl K, Kaleschke L, Kreker K, Klages M, Soltwedel T, Lorenzen C, Wegner J (2009) Particle sedimentation patterns in the eastern Fram Strait during 2000–2005: results from the Arctic long-term observatory HAUSGARTEN. Deep Sea Res I 56:1471–1487

    Article  CAS  Google Scholar 

  • Berelson WM (2001) The flux of particulate organic carbon into the ocean interior: a comparison of four US JGOFS regional studies. Oceanography 14:59–67

    Google Scholar 

  • Bergmann M, Dannheim J, Bauerfeind E, Klages M (2009) Trophic relationships along a bathymetric gradient at the deep-sea observatory HAUSGARTEN. Deep Sea Res I 56:408–424

    Article  CAS  Google Scholar 

  • Blachowiak-Samolyk K, Kwasniewski S, Dmoch K, Hop H, Falk-Petersen S (2007) Trophic structure of zooplankton in the Fram Strait in spring and autumn 2003. Deep Sea Res II 54:2716–2728

    Article  Google Scholar 

  • Bluhm BA, Gradinger R (2008) Regional variability in food availability for Arctic marine mammals. Ecol Appl 18:S77–S96

    Article  PubMed  Google Scholar 

  • Boyd PW, Trull TW (2007) Understanding the export of biogenic particles in oceanic waters: is there consensus? Prog Oceanogr 72:276–312

    Article  Google Scholar 

  • Boyd PW, Gall MP, Silver MW, Coale SL, Bidigare RR, Bishop JLKB (2008) Quantifying the surface-subsurface biogeochemical coupling during the VERTIGO ALOHA and K2 studies. Deep Sea Res II 55:1578–1593

    Article  Google Scholar 

  • Buesseler KO (1998) The decoupling of production and particulate export in the surface ocean. Global Biogeochem Cycles 12:297–310

    Article  CAS  Google Scholar 

  • Buesseler KO, Antia AN, Chen M, Fowler SW, Gardner WD, Gustafsson O, Harada K, Michaels AF, van der Loeff M, Sarin M (2007) An assessment of the use of sediment traps for estimating upper ocean particle fluxes. J Mar Res 65:345–416

    CAS  Google Scholar 

  • Campbell RW (2008) Overwintering habitat of Calanus finmarchicus in the North Atlantic inferred from autonomous profiling floats. Deep Sea Res I 55:630–645

    Article  Google Scholar 

  • Carmack E, Wassmann P (2006) Food webs and physical-biological coupling on pan-Arctic shelves: unifying concepts and comprehensive perspectives. Prog Oceanogr 71:446–477

    Article  Google Scholar 

  • Carmack E, Barber D, Christensen J, Macdonald R, Rudels B, Sakshaug E (2006) Climate variability and physical forcing of the food webs and the carbon budget on panarctic shelves. Prog Oceanogr 71:145–181

    Article  Google Scholar 

  • Caroll ML, Caroll J (2003) The Arctic Seas. In: Black KD, Shimmield GB (eds) Biogeochemistry of marine systems. Blackwell, Oxford, pp 127–147

    Google Scholar 

  • Deuser WG, Muller-Karger FE, Evans RH, Brown OB, Esaias WE, Feldman GC (1990) Surface-ocean color and deep-ocean carbon flux: how close a connection? Deep Sea Res A 37:1331–1343

    Article  CAS  Google Scholar 

  • Dmitrenko IA, Polyakov IV, Kirillov SA, Timokhov LA, Frolov IE, Sokolov VT, Simmons HL, Ivanov VV, Walsh D (2008) Toward a warmer Arctic Ocean: spreading of the early 21st century Atlantic water warm anomaly along the Eurasian Basin margins. J Geophys Res 113:C05023

    Article  Google Scholar 

  • Eppley RW, Peterson BJ (1979) Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282:677–680

    Article  Google Scholar 

  • Fenchel T (2008) The microbial loop—25 years later. J Exp Mar Biol Ecol 366:99–103

    Article  Google Scholar 

  • Fischer G, Donner B, Ratmeyer V, Davenport R, Wefer G (1996) Distinct year-to-year particle flux variations off Cape Blanc during 1988–1991: relation to delta18O-deduced sea-surface temperatures and trade winds. J Mar Res 54:73–98

    Article  Google Scholar 

  • Hegseth EN, Sundfjord A (2008) Intrusion and blooming of Atlantic phytoplankton species in the high Arctic. J Mar Sys 74:108–119

    Article  Google Scholar 

  • Honjo S, Manganini SJ, Krishfield RA, Francois R (2008) Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: a synthesis of global sediment trap programs since 1983. Prog Oceanogr 76:217–285

    Article  Google Scholar 

  • Hop H, Pavlova O (2008) Distribution and biomass transport of ice amphipods in drifting sea ice around Svalbard. Deep Sea Res II 55:2292–2307

    Article  Google Scholar 

  • Hop H, Falk-Petersen S, Svendsen H, Kwasniewski S, Pavlov V, Pavlova O, Søreide JE (2006) Physical and biological characteristics of the pelagic system across Fram Strait to Kongsfjorden. Prog Oceanogr 71:182–231

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007—The Physical Science Basis Working Group I Contribution to the fourth assessment report of the IPCC Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Kirchman DL, Moran XAG, Ducklow H (2009) Microbial growth in the polar oceans—role of temperature and potential impact of climate change. Nat Rev Microbiol 7:451–459

    CAS  PubMed  Google Scholar 

  • Klaas C, Archer DE (2002) Association of sinking organic matter with various types of mineral ballast in the deep sea: implications for the rain ratio. Global Biogeochem Cycles 16:1116

    Article  Google Scholar 

  • Kwok R (2009) Outflow of Arctic Ocean sea ice into the Greenland and Barents Seas: 1979–2007. J Climate 22:2438–2457

    Article  Google Scholar 

  • Lavoie D, Denman KL, Macdonald RW (2010) Effects of future climate change on primary productivity and export fluxes in the Beaufort Sea. J Geophys Res 115:C04018

    Google Scholar 

  • Loeng H, Brander K, Carmack E, Denisenko S, Drinkwater K, Hansen B, Kovacs K, Livingston P (2005) Marine Systems. In: Symon C, Arris L, Heal B (eds) Arctic climate impact assessment. Cambridge University Press, New York, pp 454–522

    Google Scholar 

  • Lutz MJ, Caldeira K, Dunbar RB, Behrenfeld MJ (2007) Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. J Geophys Res 112:C10011

    Article  Google Scholar 

  • Manizza M, Follows MJ, Dutkiewicz S, McClelland JW, Menemenlis D, Hill CN, Townsend-Small A, Peterson BJ (2009) Modeling transport and fate of riverine dissolved organic carbon in the Arctic Ocean. Global Biogeochem Cycles 23:GB4006

    Article  Google Scholar 

  • Martin JH, Knauer GA, Karl DM, Broenkow WW (1987) VERTEX: carbon cycling in the northeast Pacific. Deep Sea Res A 34:267–285

    Article  CAS  Google Scholar 

  • Maslanik J, Stroeve J (1999) Updated daily. Near-Real-Time DMSP SSM/I Daily Polar Gridded Sea Ice Concentrations, [January 2000 to December 2005]. Boulder, Colorado USA: National Snow and Ice Data Center. Digital media: http://nsidc.org/data/nsidc-0081.html

  • Møller EF (2005) Sloppy feeding in marine copepods: prey-size-dependent production of dissolved organic carbon. J Plankton Res 27:27–35

    Article  Google Scholar 

  • Morata N, Renaud PE (2008) Sedimentary pigments in the western Barents Sea: a reflection of pelagic-benthic coupling? Deep Sea Res II 55:2381–2389

    Article  CAS  Google Scholar 

  • Nodder SD, Boyd PW, Chiswell SM, Pinkerton MH, Bradford-Grieve JM, Greig MJN (2005) Temporal coupling between surface and deep ocean biogeochemical processes in contrasting subtropical and subantarctic water masses, southwest Pacific Ocean. J Geophys Res 110:C12017

    Article  Google Scholar 

  • NSIDC (2009) Arctic Sea Ice News & Analysis National Snow and Ice Data Center, 6 April 2009, Accessible via http://nsidc.org/arcticseaicenews/2009/040609.html/

  • Olli K, Wassmann P, Reigstad M, Ratkova TN, Arashkevich E, Pasternak A, Matrai PA, Knulst J, Tranvik L, Klais R, Jacobsen A (2007) The fate of production in the central Arctic Ocean—top-down regulation by zooplankton expatriates? Prog Oceanogr 72:84–113

    Article  Google Scholar 

  • Parsons T (1988) Trophodynamic phasing in theoretical, experimental aud natural pelagic ecosystems. J Oceanogr 44:94–101

    Google Scholar 

  • Pegau WS, Zaneveld JRV (2000) Field measurements of in-ice radiance. Cold Reg Sci Technol 31:33–46

    Article  Google Scholar 

  • Piechura J (2004) The circulation of the Nordic Seas. In: Skreslet S (ed) NATO advanced research workshop on Jan Mayen Island in scientific focus. Kluwer, pp 91–100

  • Polyakov IV, Beszczynska A, Carmack EC, Dmitrenko IA, Fahrbach E, Frohlov IE, Gerdes R, Hansen E, Holfort J, Ivanov VV, Johnson MA, Karcher M, Kauker F, Morison J, Orvik KA, Schauer U, Simmons HL, Simmons HL, Skagseth O, Sokolov VT, Steele M, Timokhov LA, Walsh D, Walsh JE (2005) One more step toward a warmer Arctic. Geophys Res Lett 32:LI7605

    Article  Google Scholar 

  • Poulsen LK, Iversen MH (2008) Degradation of fecal pellets: key role of protozooplankton. Mar Ecol Prog Ser 367:1–13

    Article  Google Scholar 

  • Primeau F (2006) On the variability of the exponent in the power law depth dependence of POC flux estimated from sediment traps. Deep Sea Res I 53:1335–1343

    Article  CAS  Google Scholar 

  • Ratkova TN, Wassmann P (2002) Seasonal variation and spatial distribution of phyto- and protozooplankton in the central Barents Sea. J Mar Sys 38:47–75

    Article  Google Scholar 

  • Reigstad M, Wexels Riser C, Wassmann P, Ratkova T (2008) Vertical export of particulate organic carbon: attenuation, composition and loss rates in the northern Barents Sea. Deep Sea Res II 55:2308–2319

    Article  CAS  Google Scholar 

  • Richardson K, Markager S, Buch E, Lassen MF, Kristensen AS (2005) Seasonal distribution of primary production, phytoplankton biomass and size distribution in the Greenland Sea. Deep Sea Res I 52:979–999

    Article  CAS  Google Scholar 

  • Sakshaug E (2004) Primary and secondary production in the Arctic Seas. In: Stein R, MacDonald RW (eds) The organic carbon cycle in the Arctic Ocean. Springer, New York, pp 57–81

    Google Scholar 

  • Schauer U, Beszczynska-Möller A, Walczowski W, Fahrbach E, Piechura J, Hansen E (2008) Variation of measured heat flow through the Fram Strait between 1997 and 2006. In: Dickson RR, Meincke J, Rhines P (eds) Arctic–Subarctic Ocean Fluxes. Springer, Netherlands, pp 65–85

    Chapter  Google Scholar 

  • Siegel DA, Fields E, Buesseler KO (2008) A bottom-up view of the biological pump: modeling source funnels above ocean sediment traps. Deep Sea Res I 55:108–127

    Article  Google Scholar 

  • Slagstad D, McClimans TA (2005) Modeling the ecosystem dynamics of the Barents Sea including the marginal ice zone: I. Physical and chemical oceanography. J Mar Syst 58:1–18

    Article  Google Scholar 

  • Slagstad D, Ellingsen I, Wassmann P (2010) Primary and secondary production in a future Arctic Ocean without summer sea ice. Prog Oceanogr Special Issue (re-submitted)

  • Tamelander T, Reigstad M, Hop H, Carroll ML, Wassmann P (2008) Pelagic and sympagic contribution of organic matter to zooplankton and vertical export in the Barents Sea marginal ice zone. Deep Sea Res II 55:2330–2339

    Article  CAS  Google Scholar 

  • Turner JT (2002) Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms. Aquat Microb Ecol 27:57–102

    Article  Google Scholar 

  • Volk T, Hoffert MI (1985) Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven pCO2 changes: the carbon cycle and atmospheric CO2: natural variations Archean to present. In: Proceedings of the Chapman conference on natural variations in carbon dioxide and the carbon cycle. American Geophysical Union, Washington, pp 99–110

  • von Eye M, von Eye A, Rodrigues J (2009) Global warming and changes in sea ice in the Greenland Sea: 1979–2007. InterStat: Available online at http://interstat.statjournals.net/YEAR/2009/abstracts/0905003.php

  • Wang M, Overland JE (2009) A sea ice free summer Arctic within 30 years? Geophys Res Lett 36:L07502

    Article  Google Scholar 

  • Wassmann P (1990) Relationship between primary and export production in the boreal coastal zone of the North Atlantic. Limnol Oceanogr 35:464–471

    Article  CAS  Google Scholar 

  • Wassmann P, Olli K, Wexels Riser C, Svensen C (2003) Ecosystem function, biodiversity and vertical flux regulation in the twilight zone. In: Wefer G, Lamy F, Mantoura F (eds) Marine science frontiers for Europe. Springer, Berlin, pp 279–287

    Google Scholar 

  • Wassmann P, Bauerfeind E, Fortier M, Fukuchi M, Hargrave B, Honjo S, Moran B, Noji T, Nöthig EM, Peinert R (2004) Particulate organic carbon flux to the Arctic Ocean Sea Floor. In: Stein R, MacDonald R (eds) The organic carbon cycle in the Arctic Ocean. Springer, New York, pp 101–138

    Google Scholar 

  • Wassmann P, Slagstad D, Wexels Riser C, Reigstad M (2006) Modelling the ecosystem dynamics of the Barents Sea including the marginal ice zone: II. Carbon flux and interannual variability. J Mar Sys 59:1–24

    Article  Google Scholar 

  • Wassmann P, Slagstad D, Ellingsen I (2010) Primary production and climatic variability in the European sector of the Arctic Ocean prior to 2007: preliminary results. Polar Biol Special Issue (this volume). doi:10.1007/s00300-010-0839-3

  • Wexels Riser C, Wassmann P, Olli K, Arashkevich E (2001) Production, retention and export of zooplankton faecal pellets on and off the Iberian shelf, north-west Spain. Prog Oceanogr 51:423–441

    Article  Google Scholar 

  • Wexels Riser C, Wassmann P, Reigstad M, Seuthe L (2008) Vertical flux regulation by zooplankton in the northern Barents Sea during Arctic spring. Deep Sea Res II 55:2320–2329

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We express high gratitude to the Arctic deep-sea HAUSGARTEN observatory team for sharing part of their long-term dataset in order to conduct this work. We thank J. Rodrigues and I. Ellingsen for providing the measured ice cover data. We gratefully thank the guest editor Dr. S. Agustí and three anonymous reviewers for insightful comments and suggestions that strengthened and greatly improved the initial manuscript. AF benefited from a postdoctoral scholarship from the Fonds québécois de la recherche sur la nature et les technologies (FQRNT). This work is a contribution to the KONGHAU project financially supported by Statoil Hydro and initiated trough a scientific collaboration between the Alfred Wegener Institute (Germany) and the ARCTOS network (Norway). KONGHAU is linked to the activities of the HERMES program (Hotspot Ecosystem Research on the Margins of European Seas) funded by the European Commission’s Framework Six Programme, under the priority Sustainable Development, Global Change and Ecosystems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Forest.

Additional information

This article belongs to the special issue: impacts of climate warming on marine and freshwater polar ecosystems, coordinated by S. Agusti, M. Sejr, and C. M. Duarte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forest, A., Wassmann, P., Slagstad, D. et al. Relationships between primary production and vertical particle export at the Atlantic-Arctic boundary (Fram Strait, HAUSGARTEN). Polar Biol 33, 1733–1746 (2010). https://doi.org/10.1007/s00300-010-0855-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-010-0855-3

Keywords

Navigation