ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-05-02
    Description: Numerous post-translational modifications of histones have been described in organisms ranging from yeast to humans. Growing evidence for dynamic regulation of these modifications, position- and modification-specific protein interactions, and biochemical crosstalk between modifications has strengthened the 'histone code' hypothesis, in which histone modifications are integral to choreographing the expression of the genome. One such modification, ubiquitylation of histone H2B (uH2B) on lysine 120 (K120) in humans, and lysine 123 in yeast, has been correlated with enhanced methylation of lysine 79 (K79) of histone H3 (refs 5-8), by K79-specific methyltransferase Dot1 (KMT4). However, the specific function of uH2B in this crosstalk pathway is not understood. Here we demonstrate, using chemically ubiquitylated H2B, a direct stimulation of hDot1L-mediated intranucleosomal methylation of H3 K79. Two traceless orthogonal expressed protein ligation (EPL) reactions were used to ubiquitylate H2B site-specifically. This strategy, using a photolytic ligation auxiliary and a desulphurization reaction, should be generally applicable to the chemical ubiquitylation of other proteins. Reconstitution of our uH2B into chemically defined nucleosomes, followed by biochemical analysis, revealed that uH2B directly activates methylation of H3 K79 by hDot1L. This effect is mediated through the catalytic domain of hDot1L, most likely through allosteric mechanisms. Furthermore, asymmetric incorporation of uH2B into dinucleosomes showed that the enhancement of methylation was limited to nucleosomes bearing uH2B. This work demonstrates a direct biochemical crosstalk between two modifications on separate histone proteins within a nucleosome.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3774535/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3774535/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McGinty, Robert K -- Kim, Jaehoon -- Chatterjee, Champak -- Roeder, Robert G -- Muir, Tom W -- GM07739/GM/NIGMS NIH HHS/ -- R01 GM086868/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Jun 5;453(7196):812-6. doi: 10.1038/nature06906. Epub 2008 Apr 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Synthetic Protein Chemistry, The Rockefeller University, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18449190" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Animals ; Catalytic Domain ; Histones/chemical synthesis/*metabolism ; Humans ; Lysine/metabolism ; Methylation ; Methyltransferases/genetics/*metabolism ; Nucleosomes/chemistry/*metabolism ; Ubiquitin/*metabolism ; Xenopus
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-09-08
    Description: MicroRNAs (miRNAs) constitute a large class of regulatory RNAs that repress target messenger RNAs to control various biological processes. Accordingly, miRNA biogenesis is highly regulated, controlled at both transcriptional and post-transcriptional levels, and overexpression and underexpression of miRNAs are linked to various human diseases, particularly cancers. As RNA concentrations are generally a function of biogenesis and turnover, active miRNA degradation might also modulate miRNA accumulation, and the plant 3'--〉5' exonuclease SDN1 has been implicated in miRNA turnover. Here we report that degradation of mature miRNAs in the nematode Caenorhabditis elegans, mediated by the 5'--〉3' exoribonuclease XRN-2, affects functional miRNA homeostasis in vivo. We recapitulate XRN-2-dependent miRNA turnover in larval lysates, where processing of precursor-miRNA (pre-miRNA) by Dicer, unannealing of the miRNA duplex and loading of the mature miRNA into the Argonaute protein of the miRNA-induced silencing complex (miRISC) are coupled processes that precede degradation of the mature miRNA. Although Argonaute:miRNA complexes are highly resistant to salt, larval lysate promotes efficient release of the miRNA, exposing it to degradation by XRN-2. Release and degradation can both be blocked by the addition of miRNA target RNA. Our results therefore suggest the presence of an additional layer of regulation of animal miRNA activity that might be important for rapid changes of miRNA expression profiles during developmental transitions and for the maintenance of steady-state concentrations of miRNAs. This pathway might represent a potential target for therapeutic intervention on miRNA expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chatterjee, Saibal -- Grosshans, Helge -- England -- Nature. 2009 Sep 24;461(7263):546-9. doi: 10.1038/nature08349. Epub 2009 Sep 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Friedrich Miescher Institute for Biomedical Research, PO Box 2543, CH-4002 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19734881" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/enzymology/*genetics/growth & development ; Caenorhabditis elegans Proteins/genetics/*metabolism ; Exoribonucleases/deficiency/genetics/*metabolism ; Gene Expression Regulation, Developmental ; Larva/genetics ; MicroRNAs/*genetics/*metabolism ; *RNA Stability ; RNA, Helminth/genetics/metabolism ; RNA-Induced Silencing Complex/chemistry/metabolism ; Ribonuclease III/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-11-29
    Description: Achieving the goal of malaria elimination will depend on targeting Plasmodium pathways essential across all life stages. Here we identify a lipid kinase, phosphatidylinositol-4-OH kinase (PI(4)K), as the target of imidazopyrazines, a new antimalarial compound class that inhibits the intracellular development of multiple Plasmodium species at each stage of infection in the vertebrate host. Imidazopyrazines demonstrate potent preventive, therapeutic, and transmission-blocking activity in rodent malaria models, are active against blood-stage field isolates of the major human pathogens P. falciparum and P. vivax, and inhibit liver-stage hypnozoites in the simian parasite P. cynomolgi. We show that imidazopyrazines exert their effect through inhibitory interaction with the ATP-binding pocket of PI(4)K, altering the intracellular distribution of phosphatidylinositol-4-phosphate. Collectively, our data define PI(4)K as a key Plasmodium vulnerability, opening up new avenues of target-based discovery to identify drugs with an ideal activity profile for the prevention, treatment and elimination of malaria.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3940870/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3940870/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McNamara, Case W -- Lee, Marcus C S -- Lim, Chek Shik -- Lim, Siau Hoi -- Roland, Jason -- Nagle, Advait -- Simon, Oliver -- Yeung, Bryan K S -- Chatterjee, Arnab K -- McCormack, Susan L -- Manary, Micah J -- Zeeman, Anne-Marie -- Dechering, Koen J -- Kumar, T R Santha -- Henrich, Philipp P -- Gagaring, Kerstin -- Ibanez, Maureen -- Kato, Nobutaka -- Kuhen, Kelli L -- Fischli, Christoph -- Rottmann, Matthias -- Plouffe, David M -- Bursulaya, Badry -- Meister, Stephan -- Rameh, Lucia -- Trappe, Joerg -- Haasen, Dorothea -- Timmerman, Martijn -- Sauerwein, Robert W -- Suwanarusk, Rossarin -- Russell, Bruce -- Renia, Laurent -- Nosten, Francois -- Tully, David C -- Kocken, Clemens H M -- Glynne, Richard J -- Bodenreider, Christophe -- Fidock, David A -- Diagana, Thierry T -- Winzeler, Elizabeth A -- 078285/Wellcome Trust/United Kingdom -- 089275/Wellcome Trust/United Kingdom -- 090534/Wellcome Trust/United Kingdom -- 096157/Wellcome Trust/United Kingdom -- R01 AI079709/AI/NIAID NIH HHS/ -- R01 AI085584/AI/NIAID NIH HHS/ -- R01 AI090141/AI/NIAID NIH HHS/ -- R01 AI103058/AI/NIAID NIH HHS/ -- R01079709/PHS HHS/ -- R01085584/PHS HHS/ -- R01AI090141/AI/NIAID NIH HHS/ -- WT078285/Wellcome Trust/United Kingdom -- WT096157/Wellcome Trust/United Kingdom -- England -- Nature. 2013 Dec 12;504(7479):248-53. doi: 10.1038/nature12782. Epub 2013 Nov 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA [2]. ; 1] Department of Microbiology & Immunology, Columbia University Medical Center, New York, New York 10032, USA [2]. ; Novartis Institutes for Tropical Disease, 138670 Singapore. ; Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA. ; Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA. ; Department of Parasitology, Biomedical Primate Research Centre, PO Box 3306, 2280 GH Rijswijk, The Netherlands. ; TropIQ Health Sciences, 6525 GA Nijmegen, The Netherlands. ; Department of Microbiology & Immunology, Columbia University Medical Center, New York, New York 10032, USA. ; Swiss Tropical and Public Health Institute, CH-4002 Basel, Switzerland. ; 1] Swiss Tropical and Public Health Institute, CH-4002 Basel, Switzerland [2] University of Basel, CH-4003 Basel, Switzerland. ; Department of Medicine, School of Medicine, Boston University, Boston, Massachusetts 02118, USA. ; Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland. ; 1] TropIQ Health Sciences, 6525 GA Nijmegen, The Netherlands [2] Department of Medical Microbiology, Radboud University, Nijmegen Medical CentrePO Box 9101, 6500 HB Nijmegen, The Netherlands. ; Laboratory of Malaria Immunobiology, Singapore Immunology Network, Agency for Science Technology and Research (A*STAR), Biopolis, 138648 Singapore. ; 1] Laboratory of Malaria Immunobiology, Singapore Immunology Network, Agency for Science Technology and Research (A*STAR), Biopolis, 138648 Singapore [2] Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, 117545 Singapore. ; 1] Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK [2] Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot 63110, Thailand. ; 1] Department of Microbiology & Immunology, Columbia University Medical Center, New York, New York 10032, USA [2] Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, New York 10032, USA. ; 1] Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA [2] Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24284631" target="_blank"〉PubMed〈/a〉
    Keywords: 1-Phosphatidylinositol 4-Kinase/*antagonists & ; inhibitors/chemistry/genetics/metabolism ; Adenosine Triphosphate/metabolism ; Animals ; Binding Sites ; Cytokinesis/drug effects ; Drug Resistance/drug effects/genetics ; Fatty Acids/metabolism ; Female ; Hepatocytes/parasitology ; Humans ; Imidazoles/metabolism/pharmacology ; Life Cycle Stages/drug effects ; Macaca mulatta ; Malaria/*drug therapy/*parasitology ; Male ; Models, Biological ; Models, Molecular ; Phosphatidylinositol Phosphates/metabolism ; Plasmodium/classification/*drug effects/*enzymology/growth & development ; Pyrazoles/metabolism/pharmacology ; Quinoxalines/metabolism/pharmacology ; Reproducibility of Results ; Schizonts/cytology/drug effects ; rab GTP-Binding Proteins/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-11-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rouyer, Francois -- Chatterjee, Abhishek -- England -- Nature. 2015 Nov 26;527(7579):449-51. doi: 10.1038/nature16316. Epub 2015 Nov 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut des Neurosciences Paris-Saclay, Universite Paris-Sud, CNRS, Universite Paris-Saclay, 91190 Gif-sur-Yvette, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26580008" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Circadian Clocks/*physiology ; Circadian Rhythm/*physiology ; Drosophila Proteins/*metabolism ; Drosophila melanogaster/*physiology ; Female ; Male ; Receptors, Ionotropic Glutamate/*metabolism ; *Temperature
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-03-26
    Description: Congenital heart disease (CHD) is the most prevalent birth defect, affecting nearly 1% of live births; the incidence of CHD is up to tenfold higher in human fetuses. A genetic contribution is strongly suggested by the association of CHD with chromosome abnormalities and high recurrence risk. Here we report findings from a recessive forward genetic screen in fetal mice, showing that cilia and cilia-transduced cell signalling have important roles in the pathogenesis of CHD. The cilium is an evolutionarily conserved organelle projecting from the cell surface with essential roles in diverse cellular processes. Using echocardiography, we ultrasound scanned 87,355 chemically mutagenized C57BL/6J fetal mice and recovered 218 CHD mouse models. Whole-exome sequencing identified 91 recessive CHD mutations in 61 genes. This included 34 cilia-related genes, 16 genes involved in cilia-transduced cell signalling, and 10 genes regulating vesicular trafficking, a pathway important for ciliogenesis and cell signalling. Surprisingly, many CHD genes encoded interacting proteins, suggesting that an interactome protein network may provide a larger genomic context for CHD pathogenesis. These findings provide novel insights into the potential Mendelian genetic contribution to CHD in the fetal population, a segment of the human population not well studied. We note that the pathways identified show overlap with CHD candidate genes recovered in CHD patients, suggesting that they may have relevance to the more complex genetics of CHD overall. These CHD mouse models and 〉8,000 incidental mutations have been sperm archived, creating a rich public resource for human disease modelling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4617540/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4617540/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, You -- Klena, Nikolai T -- Gabriel, George C -- Liu, Xiaoqin -- Kim, Andrew J -- Lemke, Kristi -- Chen, Yu -- Chatterjee, Bishwanath -- Devine, William -- Damerla, Rama Rao -- Chang, Chienfu -- Yagi, Hisato -- San Agustin, Jovenal T -- Thahir, Mohamed -- Anderton, Shane -- Lawhead, Caroline -- Vescovi, Anita -- Pratt, Herbert -- Morgan, Judy -- Haynes, Leslie -- Smith, Cynthia L -- Eppig, Janan T -- Reinholdt, Laura -- Francis, Richard -- Leatherbury, Linda -- Ganapathiraju, Madhavi K -- Tobita, Kimimasa -- Pazour, Gregory J -- Lo, Cecilia W -- HG000330/HG/NHGRI NIH HHS/ -- R01 GM060992/GM/NIGMS NIH HHS/ -- R01MH094564/MH/NIMH NIH HHS/ -- U01 HL098180/HL/NHLBI NIH HHS/ -- U01HL098180/HL/NHLBI NIH HHS/ -- U01HL098188/HL/NHLBI NIH HHS/ -- England -- Nature. 2015 May 28;521(7553):520-4. doi: 10.1038/nature14269. Epub 2015 Mar 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201, USA. ; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA. ; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. ; 1] Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15206, USA [2] Intelligent Systems Program, School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 16260, USA. ; The Jackson Laboratory, Bar Harbor, Maine 04609, USA. ; The Heart Center, Children's National Medical Center, Washington DC 20010, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25807483" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cilia/genetics/*pathology/physiology/ultrasonography ; DNA Mutational Analysis ; Electrocardiography ; Exome/genetics ; Genes, Recessive ; Genetic Testing ; Heart Defects, Congenital/*genetics/*pathology/ultrasonography ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Mutation/genetics ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...