ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-03-05
    Description: Putnisite, SrCa 4 $${\mathrm{Cr}}_{8}^{3+}$$ (CO 3 ) 8 SO 4 (OH) 16 ·25H 2 O, is a new mineral from the Polar Bear peninsula, Southern Lake Cowan, Western Australia, Australia. The mineral forms isolated pseudocubic crystals up to 0.5 mm in size in a matrix composed of quartz and a near amorphous Cr silicate. Putnisite is translucent, with a pink streak and vitreous lustre. It is brittle and shows one excellent and two good cleavages parallel to {100}, {010} and {001}. The fracture is uneven and the Mohs hardness 11/2–2. The measured density is 2.20(3) g/cm 3 and the calculated density based on the empirical formula is 2.23 g/cm 3 . Optically, putnisite is biaxial negative, with α = 1.552(3), β = 1.583(3) and = 1.599(3) (measured in white light). The optical orientation is uncertain and pleochroism is distinct: X pale bluish grey, Y pale purple, Z pale purple. Putnisite is orthorhombic, space group Pnma , with a = 15.351(3), b = 20.421(4) Å, c = 18.270(4) Å, V = 5727(2) Å 3 (single-crystal data), and Z = 4. The strongest five lines in the X-ray powder diffraction pattern are [d(Å)( I )( hkl )]: 13.577 (100) (011), 7.659 (80) (200), 6.667 (43) (211), 5.084 (19) (222, 230), 3.689 (16) (411). Electron microprobe analysis (EMPA) gave (wt.%): Na 2 O 0.17, MgO 0.08, CaO 10.81, SrO 5.72, BaO 0.12, CuO 0.29, Cr 2 O 3 31.13, SO 3 3.95, SiO 2 0.08, Cl – 0.28, CO 2calc 17.94, H 2 O calc 30.30, O=Cl –0.06, total 100.81. The empirical formula, based on O + Cl = 69, is: $${\mathrm{Cr}}_{8.02}^{3+}$$ Ca 3.78 Sr 1.08 Na 0.11 $${\mathrm{Cu}}_{0.07}^{2+}$$ Mg 0.04 Ba 0.02 [(SO 4 ) 0.96 (SiO 4 ) 0.03 ] 0.99 (CO 3 ) 7.98 (OH) 16.19 Cl 0.15 ·24.84H 2 O. The crystal structure was determined from single-crystal X-ray diffraction data (Mo K α, CCD area detector and refined to R 1 = 5.84% for 3181 reflections with F 0 〉 4 F . Cr(OH) 4 O 2 octahedra link by edge-sharing to form an eight-membered ring. A 10-coordinated Sr 2+ cation lies at the centre of each ring. The rings are decorated by CO 3 triangles, each of which links by corner-sharing to two Cr(OH) 4 O 2 octahedra. Rings are linked by Ca(H 2 O) 4 O 4 polyhedra to form a sheet parallel to (100). Adjacent sheets are joined along [100] by corner-sharing SO 4 tetrahedra. H 2 O molecules occupy channels that run along [100] and interstices between slabs. Moderate to weak hydrogen bonding provides additional linkage between slabs.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-06-01
    Description: Bendadaite, ideally Fe2+Fe23+(AsO4)2(OH)2·4H2O, is a new member of the arthurite group. It was found as a weathering product of arsenopyrite on a single hand specimen from the phosphate pegmatite Bendada, central Portugal (type locality). Co-type locality is the granite pegmatite of Lavra do Almerindo (Almerindo mine), Linópolis, Divino das Laranjeiras county, Minas Gerais, Brazil. Further localities are the Veta Negra mine, Copiapó province, Chile; Oumlil-East, Bou Azzer district, Morocco; and Pira Inferida yard, Fenugu Sibiri mine, Gonnosfanadiga, Medio Campidano Province, Sardinia, Italy.Type bendadaite occurs as blackish green to dark brownish tufts (Y〉X, optical dispersion weak,r〉v. Optical axis plane is parallel to (010), withXapproximately parallel toaandZnearly parallel to c. Bendadaite has vitreous to sub-adamantine luster, is translucent and non-fluorescent. It is brittle, shows irregular fracture and a good cleavage parallel to {010}. Dmeas.3.15±0.10 g/cm3, Dcalc.3.193 g/cm3(for the empirical formula). The five strongest powder diffraction lines [din Å (I)(hkl)] are 10.22 (10)(100), 7.036 (8)(110), 4.250 (5)(111), 2.865 (4)(), 4.833 (3)(020,011). Thedspacings are very similar to those of its Zn analogue, ojuelaite. The crystal structure of bendadaite was solved and refined using a crystal from the co-type locality with the composition (Fe2+0.95☐0.05)Σ1.00(Fe3+1.80Al0.20)Σ2.00(As1.48P0.52)Σ2.00O8(OH)2·4H2O (R= 1.6%), and confirms an arthurite-type atomic arrangement.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2001-12-01
    Description: The crystal structure of ulrichite, CaCu2+(UO2)(PO4)2·4H2O (space group P21/c, a = 12.784(3), b = 6.996(1), c = 13.007(3)Å, β = 91.92(1)°, V = 1162.7(4)Å3, Z = 4) was redetermined using X-ray diffraction data measured from a twinned crystal with Mo-Kα radiation and a CCD area detector (2510 unique reflections with Fo 〉 4σ(Fo), R1 = 8.8%). Ulrichite crystallizes in space group P21/c rather than C2/m reported previously. The newly determined atomic positions give reasonable coordination polyhedra. One unique Ca atom is irregularly coordinated by eight O atoms ( = 2.46 Å). One unique U atom shows a {2+5} coordination with characteristic bond angles and lengths (1.806(11)Å, 1.842(12)Å and five bonds between 2.252(15) and 2.441(11)Å). Furthermore, the structure contains groups in which strongly elongated CuO6 ‘octahedra’ (also describable as CuO4 squares) are corner-linked to two PO4 tetrahedra via two opposite, equatorial O atoms. Edge- and corner-sharing UO7, CaO8 and PO4 polyhedra form heteropolyhedral sheets parallel to (001) that are linked to adjacent sheets via the CuO6 ‘octahedra’ and hydrogen bonds.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1996-10-01
    Description: Wesselsite, SrCu[Si4O10], is a new mineral species from the Wessels mine, Kalahari Manganese Field, South Africa, and it belongs to the gillespite group. Wesselsite is tetragonal, space group P4/ncc; the unit cell parameters, refined from Gandolfi film data, are a = 7.366(1), c = 15.574(3) Å V = 845.01 Å3. The strongest lines are (dobs/lobs/hkl) (7.79/35/002), (4.33/20/112), (3.89/20/004), (3.44/40/104), (3.33/100/202), (3.12/55/114), (3.03/50/212), (2.68/25/204), (2.61/30/220) and (2.32/30/116). Wesselsite is associated with hennomartinite, embedded in a matrix of sugilite, xonotlite, quartz and pectolite. Microprobe analyses of 111 samples show that it is the end-member of a solid solution series with effenbergerite, BaCu[Si4O10], with substitutions of Sr by Ba up to 50 mol.%. Wesselsite forms tiny subhedral plates in sizes not exceeding 50 × 50 × 5 µm, arranged in clusters of up to 200 µm. It shows a perfect cleavage parallel to {001}, has blue colour, white to light blue streak, and is uniaxial negative with ω = 1.630(2), ε = 1.590(5), strongly pleochroic from blue (ω) to pale blue (ε). The calculated density is 3.32 g cm−3, the measured density is 3.2(1) g cm−3.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2000-10-01
    Description: The crystal structure of faustite, ZnAl6(PO4)4(OH)8.4H2O, was determined using single-crystal data (Mo-Kα X-radiation, CCD area detector, 1624 unique reflections, R1 = 4.91%, wR2 = 9.23%), and compared with results of a reinvestigation of the structure of its copper analogue turquoise, CuAl6(PO4)4(OH)8.4H2O (2737 unique reflections, R1 = 2.81%, wR2 = 6.90%). Both are isostructural and crystallize in space group P1̄, with a = 7.419(2) [turquoise: 7.410(1)], b = 7.629(3) [7.633(1)], c = 9.905(3) [9.904(1)] Å, α = 69.17(2) [68.42(1)], β = 69.88(2) [69.65(1)], γ = 64.98(2) [65.05(1)]°, V = 462.2(3) [460.27(10)] Å3, and Z = 1. The structure consists of distorted MO6 polyhedra (M = Zn, Cu), AlO6 octahedra and PO4 tetrahedra. By edge- and corner-sharing of these polyhedra a fairly dense three-dimensional framework is formed which is further strengthened by a system of hydrogen bonds. The metal atoms in the unique MO6 (M = Zn or Cu) polyhedron show a distorted [2+2+2]-coordination, the distortion being more pronounced in turquoise. About 10% of the M site is vacant in both minerals. In turquoise, a previously undetected structural site with a very low occupancy of (possibly) Cu is present at the position (Ý,0,Ý).
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1997-08-01
    Description: A sample of the zeolite paulingite from the locality Vinarická Hora was investigated by means of chemical, thermal, powder and single crystal X-ray methods. The fully transparent, colourless to pale yellow crystals exhibit the form {110} and occur together with phillipsite. The chemical composition is (Ca2.57K2.28Ba1.39Na0.38)(Al11.55Si30.59O84)·27H2O, Z = 16 with minor amounts of Mg (
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1994-12-01
    Description: Effenbergerite, ideally BaCu[Si4O10], structure determined by single crystal X-ray methods in space group P4/ncc, a = 7.442(2)Å, c = 16.133(5)Å, V = 893.50 Å3 Z = 4, is a new mineral from the Wessels mine, Kalahari Manganese Field, South Africa. It is associated with native copper, calcite, quartz and clinozoisite within pectolite veinlets, embedded in a matrix of braunite, sugilite and hausmannite. Effenbergerite occurs as transparent blue platelets with perfect cleavage parallel to {001} in sizes up to 8.0 × 8.0 × 0.1mm. It has a pale blue streak, subconchoidal fracture, a calculated density of 3.52gcm−3 and an estimated Mohs' hardness of 4–5. Effenbergerite is uniaxial negative with ω = 1.633(2), ε = 1.593(2), strongly pleochroic from intense blue (ω) to nearly colourless (ε). The strongest lines in the X-ray powder diffraction pattern (with refined lattice parameters a = 7.440(1)Å, c = 16.133(2)Å) are: (dobs/Iobs/hkl) (8.0624/100/002), (4.0325/39/004), (3.5443/29/104), (3.1998/44/114), (2.6892/21/006), (2.3943/41/116), (2.0169/34/008), (1.9466/22/108) and (1.4802/21/2.0.70).Effenbergerite is the natural analogue to synthetic BaCu[Si4O10], isotypic with SrCu[Si4O10] and CaCr[Si4O10] as well as with the minerals cuprorivaite, CaCu[Si4O10] and gillespite, BaFe[Si4O10]. The structure consists of silicate sheets [Si8O20]8− parallel (001) formed by corner-linkage of silicate 4-membered rings. The copper(II) atom is nearly planar 4-coordinated; the barium atom has a distorted cubelike environment of oxygen atoms. The mineral is named for Dr. Herta S. Effenberger of the University of Vienna, Austria.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-02-01
    Description: Putnisite, SrCa4Cr83+ (CO7)8SO4(OH)16·25H2O, is a new mineral from the Polar Bear peninsula, Southern Lake Cowan, Western Australia, Australia. The mineral forms isolated pseudocubic crystals up to 0.5 mm in size in a matrix composed of quartz and a near amorphous Cr silicate. Putnisite is translucent, with a pink streak and vitreous lustre. It is brittle and shows one excellent and two good cleavages parallel to {100}, {010} and {001}. The fracture is uneven and the Mohs hardness 1½−2. The measured density is 2.20(3) g/cm3 and the calculated density based on the empirical formula is 2.23 g/cm3. Optically, putnisite is biaxial negative, with α = 1.552(3), β = 1.583(3) and γ = 1.599(3) (measured in white light). The optical orientation is uncertain and pleochroism is distinct: X pale bluish grey, Y pale purple, Z pale purple. Putnisite is orthorhombic, space group Pnma, with a = 15.351(3), b = 20.421(4) Å, c = 18.270(4) Å, V = 5727(2) Å3 (single-crystal data), and Z = 4. The strongest five lines in the X-ray powder diffraction pattern are [d(Å)(I)(hkl)]: 13.577 (100) (011), 7.659 (80) (200), 6.667 (43) (211), 5.084 (19) (222, 230), 3.689 (16) (411). Electron microprobe analysis (EMPA) gave (wt.%): Na2O 0.17, MgO 0.08, CaO 10.81, SrO 5.72, BaO 0.12, CuO 0.29, Cr2O3 31.13, SO3 3.95, SiO2 0.08, Cl− 0.28, CO2calc 17.94, H2Ocalc 30.30, O=Cl−0.06, total 100.81. The empirical formula, based on O + Cl = 69, is: Cr8.023+Ca3.78Sr1.08Na0.11Cu0.072+Mg0.04Ba0.02[(SO4)0.96(SiO4)0.03]0.99 (CO3)7.98(OH)16.19Cl0.15·24.84H2O. The crystal structure was determined from single-crystal X-ray diffraction data (MoKα, CCD area detector and refined to R1 = 5.84% for 3181 reflections with F0 〉 4σF. Cr(OH)4O2 octahedra link by edge-sharing to form an eight-membered ring. A 10-coordinated Sr2+ cation lies at the centre of each ring. The rings are decorated by CO3 triangles, each of which links by corner-sharing to two Cr(OH)4O2 octahedra. Rings are linked by Ca(H2O)4O4 polyhedra to form a sheet parallel to (100). Adjacent sheets are joined along [100] by corner-sharing SO4 tetrahedra. H2O molecules occupy channels that run along [100] and interstices between slabs. Moderate to weak hydrogen bonding provides additional linkage between slabs.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-12-01
    Description: A new silicate, colinowensite, BaCuSi2O6, has been found in the Wessels mine, Kalahari Manganese Field, South Africa. It is associated with effenbergerite, wesselsite, lavinskyite, scottyite, diegogattaite, as well as with pectolite, quartz, aegirine, richterite, minerals of the garnet group and a number of different manganese and iron oxides, especially hausmannite and hematite. The mineral was named for the mineral collector and finder of the new species, Colin R. Owens, of Somerset West, South Africa. Colinowensite is brittle, with uneven fracture, and the estimated Mohs hardness is ∼4. It occurs as subhedral crystals
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-02-01
    Description: Plimerite, ideally Zn (PO4)3(OH)5, is a new mineral from the Block 14 Opencut, Broken Hill, New SouthWales. It occurs as pale-green to dark-olive-green, almost black, acicular to prismatic and bladed crystals up to 0.5 mm long and as hemispherical aggregates of radiating acicular crystals up to 3 mm across. Crystals are elongated along [001] and the principal form observed is {100} with minor {010} and {001}. The mineral is associated with hinsdalite-plumbogummite, pyromorphite, libethenite, brochantite, malachite, tsumebite and strengite. Plimerite is translucent with a pale-greyish-green streak and a vitreous lustre. It shows an excellent cleavage parallel to {100} and {010} and distinct cleavage parallel to {001}. It is brittle, has an uneven fracture, a Mohs’ hardness of 3.5–4, D(meas.) = 3.67(5) g/cm3 and D(calc.) = 3.62 g/cm3 (for the empirical formula). Optically, it is biaxial negative with α = 1.756(5), β = 1.764(4), γ = 1.767(4) and 2V(calc.) of –63º; pleochroism is X pale-greenish-brown, Y pale-brown, Z pale-bluish-green; absorption Z 〉 X 〉 Y; optical orientation XYZ = cab. Plimerite is orthorhombic, space group Bbmm, unit-cell parameters: a = 13.865(3) Å, b = 16.798(3) Å, c = 5.151(10) Å, V = 1187.0(4) Å3 (single-crystal data) and Z = 4. Strongest lines in the X-ray powder diffraction pattern are [d (A˚ ), I, hkl]: 4.638, (50), (111); 3.388, (50), (041); 3.369, (55), (131); 3.168, (100), (132); 2.753, (60), (115); 2.575, (90), (200); 2.414, (75), (220); 2.400, (50), (221); 1.957, (40), (225). Electron microprobe analysis yielded (wt.%): PbO 0.36, CaO 0.17, ZnO 20.17, MnO 0.02, Fe2O3 29.82, FeO 2.98, Al2O3 4.48, P2O5 32.37, As2O5 0.09, H2O (calc) 6.84, total 97.30 (Fe3+/Fe2+ ratio determined by Mössbauer spectroscopy). The empirical formula calculated on the basis of 17 oxygens is Ca0.02Pb0.01Zn1.68Al0.60P3.09As0.01O17.00H5.15. The crystal structure was solved by direct methods and refined to an R1 index of 6.41% for 1332 observed reflections from single-crystal X-ray diffraction data (Mo-Kα radiation, CCD area detector). The structure of plimerite is isotypic with that of rockbridgeite and is based on face-sharing trimers of (Mϕ6) octahedra which link by sharing edges to form chains, that extend in the b-direction. Chains link to clusters comprising pairs of corner-sharing (Mϕ6) octahedra that link to PO4 tetrahedra forming sheets parallel to (001). The sheets link via octahedra and tetrahedra corners into a heteropolyhedral framework structure. The mineral name honours Professor Ian Plimer for his contributions to the study of the geology of ore deposits.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...