ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (8)
  • Geological Society  (8)
  • 2015-2019  (5)
  • 1980-1984  (3)
  • 1940-1944
  • 1
    facet.materialart.
    Unknown
    Geological Society
    In:  In: Subaqueous Mass Movements and Their Consequences: Assessing Geohazards, Environmental Implications and Economic Significance of Subaqueous Landslides. Geological Society London Special Publications, 477 . Geological Society, London, pp. 455-477.
    Publication Date: 2020-08-04
    Description: Landslides are common in aquatic settings worldwide, from lakes and coastal environments to the deep sea. Fast-moving, large-volume landslides can potentially trigger destructive tsunamis. Landslides damage and disrupt global communication links and other critical marine infrastructure. Landslide deposits act as foci for localized, but important, deep-seafloor biological communities. Under burial, landslide deposits play an important role in a successful petroleum system. While the broad importance of understanding subaqueous landslide processes is evident, a number of important scientific questions have yet to receive the needed attention. Collecting quantitative data is a critical step to addressing questions surrounding subaqueous landslides. Quantitative metrics of subaqueous landslides are routinely recorded, but which ones, and how they are defined, depends on the end-user focus. Differences in focus can inhibit communication of knowledge between communities, and complicate comparative analysis. This study outlines an approach specifically for consistent measurement of subaqueous landslide morphometrics to be used in the design of a broader, global open-source, peer-curated database. Examples from different settings illustrate how the approach can be applied, as well as the difficulties encountered when analysing different landslides and data types. Standardizing data collection for subaqueous landslides should result in more accurate geohazard predictions and resource estimation.
    Type: Book chapter , NonPeerReviewed , info:eu-repo/semantics/bookPart
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Geological Society
    In:  In: The Archaeological and Forensic Applications of Microfossils: A Deeper Understanding of Human History. , ed. by Williams, M. The Micropalaeontological Society Special Publications . Geological Society, London, pp. 35-53.
    Publication Date: 2019-10-24
    Description: This paper focuses on the submerged landscapes of the southern North Sea, an area often referred to as Doggerland, which was inundated as a result of relative sea-level rise at the start of the Holocene. The timing, pattern and process of environmental changes and the implications for prehistoric (Mesolithic) human communities living in this area have long been a subject of debate and discussion. Recent developments in marine geophysics have permitted the mapping of the pre-submergence landscape, leading to the identification of landforms including river channels and other contexts suitable for the preservation of palaeoecological records. The paper describes multi-proxy (pollen, foraminifera, plant macrofossil and insect) palaeoenvironmental analyses of a vibrocore sequence recovered from a palaeochannel feature c. 80 km off the coast of eastern England. The palaeochannel preserves sediments of Late Pleistocene and Holocene age (MIS2/1); the record suggests that channel incision, probably during the early Holocene, was followed by a phase of peat formation (c. 9–10 cal ka BP) indicating paludification and the subsequent reactivation of the channel (c. 9–6 cal ka BP), initially under freshwater and increasingly brackish/saline conditions, and a final transition to full marine conditions (6–5 cal ka BP). The pollen, macrofossil and beetle records indicate the presence of pre-submergence deciduous woodland, but detailed interpretation of the data is hindered by taphonomic complications. The paper concludes with a discussion of the problems and potentials of using palaeoenvironmental data to reconstruct complex patterns of environmental change across Doggerland in four dimensions, and considers specific questions concerning the implications of such processes for Mesolithic human communities.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Geological Society
    In:  In: Atlas of submarine glacial landforms. , ed. by Dowdeswell, J. A., Canals, M., Jakobsson, M., Todd, B. J., Dowdeswell, E. K. and Hogan, K. A. Geological Society London Memoirs, 46 . Geological Society, London, pp. 17-40.
    Publication Date: 2017-02-14
    Description: The mapping of submarine glacial landforms is largely dependent on marine geophysical survey methods capable of imaging the seafloor and sub-bottom through the water column. Full global coverage of seafloor mapping, equivalent to that which exists for the Earth's land surface, has, to date, only been achieved by deriving bathymetry from radar altimeters on satellites such as GeoSat and ERS-1 (Smith & Sandwell 1997). The horizontal resolution is limited by the footprint of the satellite sensors and the need to average out local wave and wind effects, resulting in a cell size of about 15 km (Sandwell et al. 2001). A further problem in high latitudes is that the altimeter data are extensively contaminated by the presence of sea ice, which degrades the derived bathymetry (McAdoo & Laxon 1997). Consequently, the satellite altimeter method alone is not suitable for mapping submarine glacial landforms, given that their morphological characterization usually requires a much finer level of detail. Acoustic mapping methods based on marine echo-sounding principles are currently the most widely used techniques for mapping submarine glacial landforms because they are capable of mapping at a much higher resolution.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Geological Society
    In:  In: Thrust and nappe tectonics. , ed. by McClay, K. R. Geological Society Special Publication, 9 . Geological Society, London, pp. 363-370.
    Publication Date: 2017-05-12
    Description: The interaction between thrust and strike slip fault systems is well detailed in Pakistan where the Chaman transform zone connects the Makran and Himalayan convergence zones and contains an internal convergence zone in the Zhob district. The transform zone contains numerous strike slip faults of which the Chaman fault proper is the westernmost. We can demonstrate at least 200 km of left lateral displacement along the Chaman fault alone. In the Zhob belt N-S shortening by folds and a major thrust fault amounts to several dozen kilometres. The 400 km wide Makran convergence zone is now being shortened by E-W oriented folds, thrust faults, and reverse faults. As these faults in the Makran zone approach the transform zone, their traces bend to the N and motion on each of them becomes oblique, combining reverse and left lateral slip. They merge continuously with the strike slip faults of the Chaman transform zone. The Makran thrust system and the Chaman transform zone first became active in the late Oligocene or early Miocene. Later (Pliocene?), a component of left lateral shear occurred across the entire Makran Zone in association with the opening of the newly identified Haman-i-Mashkel fault trough S of the Chagai Hills and W of the Ras Koh. The total displacement and displacement rate across the Chaman transform zone varies in response to the rates of convergence in the plates E and W of the zone.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Geological Society
    In:  In: Fine-Grained Sediments: Deep-Water Processes and Facies. , ed. by Stow, D. A. V. and Piper, D. J. W. Geological Society Special Publication, 15 . Geological Society, London, pp. 527-560.
    Publication Date: 2017-01-30
    Description: The widespread occurrence of organic-carbon-rich strata (‘black shales’) in certain portions of Jurassic, Cretaceous and Cenozoic sequences has been well-documented from Deep Sea Drilling Project sites in the Atlantic and Pacific Oceans and from sequences, now exposed on land, originally deposited in the Tethyan ocean. These ancient black shales usually have been explained by analogy with examples of modern deep-sea sediments in which organic matter locally is preserved by (1) increasing the supply of organic matter, (2) increasing the rate of sedimentation, and/or (3) decreasing the oxygen content of the bottom water. However, detailed examination of many black shales reveals characteristics that cannot be explained by simple local models, including: their approximate coincidence in time globally; their occurrence in a variety of different environments, including open oxygenated oceans, restricted basins, deep and shallow water; their interbedding with organic-carbonpoor strata which often dominate a so-called black shale sequence; their deposition by pelagic, hemipelagic, turbiditic and other processes; and the variations in type and amount of organic matter that occur even within the same sequence. A more complex model for the origin of black shales therefore appears most appropriate, in which the cyclic preservation of organic matter depends on the interplay of the three main variables, namely supply of organic matter, sedimentation rate, and deep-water oxygenation, each of which varies independently to some extent. The variation and relative importance of these parameters in individual basins and widespread black shale deposition in general are linked globally and temporally by changes in global sea-level, climate and related changes in oceanic circulation. An important and often overlooked factor for the supply of organic matter to deep-basin sediments is the frequency and magnitude of redepositional processes. The interplay of these variables is discussed in relation to the middle Cretaceous and Cenozoic organic-carbon-rich strata, in particular, which show marked differences in the relative importance of the different variables.
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Geological Society
    In:  In: Magmatic rifting and active volcanism. , ed. by Wright, T. J. Geological Society Special Publication, 420 . Geological Society, London, pp. 181-208.
    Publication Date: 2017-01-17
    Description: Erta ‘Ale volcano lies at the centre of the Erta ‘Ale rift segment in northern Afar, Ethiopia and hosts one of the few persistent lava lakes found on Earth in its summit caldera. Previous studies have reported anecdotal evidence of a correlation between lake activity and magmatic and tectonic events in the broader region. We investigated this hypothesis for the period 2000–15 by comparing a catalogue of regional events with changes in lake activity reconstructed from Earth Observation data. The lava lake underwent dramatic changes during the study period, exhibiting an overall rise in height with concomitant changes in geometry consistent with a change in heat energy balance. Numerous paroxysms occurred in the lake and in the north pit; a significant dyke intrusion with subsequent re-intrusions indicated a role for dykes in maintaining the lake. However, despite some coincidences between the paroxysms and regional events, we did not find any statistically significant relationship between the two on a timescale of days to weeks. Nevertheless, changes in lake activity have preceded the broad increase in regional activity since 2005 and we cannot rule out a relationship on a decadal scale.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Geological Society
    In:  In: Magmatic rifting and active volcanism. , ed. by Wright, T. G. Geological Society Special Publication, 420 . Geological Society, London, pp. 165-180.
    Publication Date: 2017-01-17
    Description: The Red Sea arm of the triple junction in northeastern Ethiopia provides an opportunity to investigate rift-forming processes at divergent boundaries. In an attempt to study the subsurface, especially the distribution and role of melt in the rifting process, we carried out a high-precision gravity survey with a mean-square error of 0.011 mgal, assisted by differential global positioning system measurements. The profile is 162 km long and strikes ENE–WSW across the southern part of the Red Sea rift at a latitude of approximately 11.75° N. Modelling of the Bouguer anomaly, constrained by a priori information, showed detailed in-rift variations in the crustal structure and the distribution of melt beneath the rift axis. Our interpretation suggested that the process of continental break-up is governed by crustal stretching and rifting accompanied by the emplacement of melt into the lower crust above a lower density upper mantle. In addition, we interpreted the thickness of the crust beneath this part of the rift axis to be 25 km. The subsurface distribution of density beneath the profile shows that the south-central part of the Red Sea rift has modified thinned crust, intruded by high-density material, which resembles the crust formed during seafloor spreading.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Geological Society
    In:  In: Thrust and Nappe Tectonics. , ed. by McClay, K. R. and Price, N. J. Special Publications Geological Society London, 9 . Geological Society, London, pp. 363-370.
    Publication Date: 2020-02-21
    Description: The interaction between thrust and strike slip fault systems is well detailed in Pakistan where the Chaman transform zone connects the Makran and Himalayan convergence zones and contains an internal convergence zone in the Zhob district. The transform zone contains numerous strike slip faults of which the Chaman fault proper is the westernmost. We can demonstrate at least 200 km of left lateral displacement along the Chaman fault alone. In the Zhob belt N-S shortening by folds and a major thrust fault amounts to several dozen kilometres. The 400 km wide Makran convergence zone is now being shortened by E-W oriented folds, thrust faults, and reverse faults. As these faults in the Makran zone approach the transform zone, their traces bend to the N and motion on each of them becomes oblique, combining reverse and left lateral slip. They merge continuously with the strike slip faults of the Chaman transform zone. The Makran thrust system and the Chaman transform zone first became active in the late Oligocene or early Miocene. Later (Pliocene?), a component of left lateral shear occurred across the entire Makran Zone in association with the opening of the newly identified Haman-i-Mashkel fault trough S of the Chagai Hills and W of the Ras Koh. The total displacement and displacement rate across the Chaman transform zone varies in response to the rates of convergence in the plates E and W of the zone.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...