ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Frontiers  (3)
  • American Association for the Advancement of Science (AAAS)  (1)
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In:  Science, 346 (6214). pp. 1227-1231.
    Publication Date: 2016-09-09
    Description: Decadal trends in the properties of seawater adjacent to Antarctica are poorly known, and the mechanisms responsible for such changes are uncertain. Antarctic ice sheet mass loss is largely driven by ice shelf basal melt, which is influenced by ocean-ice interactions and has been correlated with Antarctic Continental Shelf Bottom Water (ASBW) temperature. We document the spatial distribution of long-term large-scale trends in temperature, salinity, and core depth over the Antarctic continental shelf and slope. Warming at the seabed in the Bellingshausen and Amundsen seas is linked to increased heat content and to a shoaling of the mid-depth temperature maximum over the continental slope, allowing warmer, saltier water greater access to the shelf in recent years. Regions of ASBW warming are those exhibiting increased ice shelf melt.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: In this paper, we outline the need for a coordinated international effort toward the building of an open-access Global Ocean Oxygen Database and ATlas (GO2DAT) complying with the FAIR principles (Findable, Accessible, Interoperable, and Reusable). GO2DAT will combine data from the coastal and open ocean, as measured by the chemical Winkler titration method or by sensors (e.g., optodes, electrodes) from Eulerian and Lagrangian platforms (e.g., ships, moorings, profiling floats, gliders, ships of opportunities, marine mammals, cabled observatories). GO2DAT will further adopt a community-agreed, fully documented metadata format and a consistent quality control (QC) procedure and quality flagging (QF) system. GO2DAT will serve to support the development of advanced data analysis and biogeochemical models for improving our mapping, understanding and forecasting capabilities for ocean O2 changes and deoxygenation trends. It will offer the opportunity to develop quality-controlled data synthesis products with unprecedented spatial (vertical and horizontal) and temporal (sub-seasonal to multi-decadal) resolution. These products will support model assessment, improvement and evaluation as well as the development of climate and ocean health indicators. They will further support the decision-making processes associated with the emerging blue economy, the conservation of marine resources and their associated ecosystem services and the development of management tools required by a diverse community of users (e.g., environmental agencies, aquaculture, and fishing sectors). A better knowledge base of the spatial and temporal variations of marine O2 will improve our understanding of the ocean O2 budget, and allow better quantification of the Earth’s carbon and heat budgets. With the ever-increasing need to protect and sustainably manage ocean services, GO2DAT will allow scientists to fully harness the increasing volumes of O2 data already delivered by the expanding global ocean observing system and enable smooth incorporation of much higher quantities of data from autonomous platforms in the open ocean and coastal areas into comprehensive data products in the years to come. This paper aims at engaging the community (e.g., scientists, data managers, policy makers, service users) toward the development of GO2DAT within the framework of the UN Global Ocean Oxygen Decade (GOOD) program recently endorsed by IOC-UNESCO. A roadmap toward GO2DAT is proposed highlighting the efforts needed (e.g., in terms of human resources).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: A warming and freshening trend of the mixed layer in the upper southeastern tropical Atlantic Ocean (SETA) is observed by the Argo float array during the time period of 2006–2020. The associated ocean surface density reduction impacts upper-ocean stratification that intensified by more than 30% in the SETA region since 2006. The initial typical subtropical stratification with a surface salinity maximum is shifting to more tropical conditions characterized by warmer and fresher surface waters and a subsurface salinity maximum. During the same period isopycnal surfaces in the upper 200 m are shoaling continuously. Observed wind stress changes reveal that open ocean wind curl-driven upwelling increased, however, partly counteracted by reduced coastal upwelling due to weakened alongshore southerly winds. Weakening southerly winds might be a reason why tropical surface waters spread more southward reaching further into the SETA region. The mixed layer warming and freshening and associated stratification changes might impact the marine ecosystem and pelagic fisheries in the Angolan and northern Namibian upwelling region.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: The warming climate is causing a strengthening of ocean stratification. Ocean stratification, in turn, has significant impacts on physical, biogeochemical and ecological processes, such as ocean circulation, ventilation, air-sea interactions, nutrient fluxes, primary productivity and fisheries. How these processes are affected in detail by changing stratification still remains uncertain and are likely to vary locally. Here, we investigate the state and trend of different parameters characterizing the stratification of the global upper-ocean which can be derived from Argo profiles for the period 2006-2021. Among those parameters are mixed layer depth, magnitude and depth of the vertical stratification maximum. The summertime stratification maximum has increased in both hemispheres, respectively. During wintertime, the stratification maximum has intensified in the Northern Hemisphere, while changes in the Southern Hemisphere have been relatively small. Comparisons to mixed layer characteristics show that a strengthening stratification is mainly accompanied by a warming and freshening of the mixed layer. In agreement with previous observational studies, we find a large-scale mixed layer deepening that regionally contributes to the increasing stratification. Globally, the vertical stratification maximum strengthens by 7-8% and the mixed layer deepens by 4 m during 2006-2021. This hints to an ongoing de-coupling of the surface ocean from the ocean interior. The investigated changes can help determine the origin of existing model-observation discrepancies and improve predictions on climate change impact on upper-ocean ecology and biogeochemistry.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...