ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C04011, doi:10.1029/2010JC006863.
    Description: Observations show that the Kuroshio in the East China Sea (ECS-Kuroshio) responds to the large-scale wind stress curl field at two time scales. It is argued that these two responses are related to barotropic and baroclinic modes that reach the ECS via different waveguides. Variability in the ECS-Kuroshio is assessed by comparing satellite altimetry, historical hydrography, and the Pacific Decadal Oscillation (PDO) index with the latter used as a proxy for the large-scale wind stress curl forcing. Sea level difference across the ECS-Kuroshio is positively correlated with PDO at zero lag and negatively correlated at 7 year lag. In contrast, pycnocline steepness and PDO are uncorrelated at zero lag and negatively correlated at 7 year lag. These signals in the ECS-Kuroshio, considered together with wind stress curl anomalies in the open ocean, are consistent with a barotropic response to the wind at zero lag. The barotropic response is likely forced in the central North Pacific by wind stress curl anomalies of opposite sign, one of which is centered at ECS latitudes (∼27°N) while the other sits further north. This suggests that, in general, the absolute transport at a given latitude is not simply that predicted by the Sverdrup balance along the latitude. This is a consequence of waveguides that can steer the barotropic mode across latitude lines. In contrast, the signals that lag PDO by 7 years are consistent with a baroclinic mode, which represents the ocean's time-integrated response to the wind stress curl along a single latitude band between 24°N and 27°N.
    Description: M.A. was supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Ocean and Climate Change Institute. Further support was provided to M.A., Y.‐O.K., and J.Y. by NSF under grant OCE‐1028739.
    Keywords: Kuroshio ; Hydrography ; Altimetry ; Rossby waves ; Interannual variability ; PDO
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C12025, doi:10.1029/2011JC007165.
    Description: In situ observations from the autonomous Argo float array are used to assess the basin-averaged ocean heat content change driven by tropical cyclones (TCs) in the North Pacific for 2000–2008. A new statistical approach based on pairs of profiles before and after each TC event is employed here to estimate the near-surface and subsurface heat content changes. Previous studies have suggested a dominant role for vertical mixing in the SST cooling response during TC passages. The Argo float observations show that, under strong TCs (greater than or equal to category 4), the subsurface warming expected from vertical mixing occurs with comparable magnitude to near-surface cooling. However, when weak TCs (less than or equal to category 3, which are about 86% of the total of TCs) were also considered, the subsurface warming was not detectable in the Argo data set, while near-surface cooling was still significant. Therefore, these results suggest that air-sea heat exchange and (upward) vertical advection likely play a somewhat greater role in the case of weak TCs. Additionally, Argo observations suggest that the restoring time scale of the near-surface heat content is greater than 30 days, which may be compared with the approximately 10 day time scale for the restoration of sea surface temperature. The mixed layer temperature and mixed layer depth evolutions also estimated from Argo data support the notion that only a thin surface layer is restored quickly to pre-TC conditions, while the rest of the cooled near-surface layer retained the TC-induced response for a good deal longer.
    Description: Support from NSF (OCE-0847160) and partly from the Meteorological Research Institute/KMA is gratefully acknowledged.
    Description: 2012-06-16
    Keywords: Argo ; Heat content ; Tropical cyclones
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: image/jpeg
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Liang, Y., Kwon, Y., Frankignoul, C., Danabasoglu, G., Yeager, S., Cherchi, A., Gao, Y., Gastineau, G., Ghosh, R., Matei, D., Mecking, J., V., Peano, D., Suo, L., & Tian, T. Quantification of the arctic sea ice-driven atmospheric circulation variability in coordinated large ensemble simulations. Geophysical Research Letters, 47(1), (2020): e2019GL085397, doi:10.1029/2019GL085397.
    Description: A coordinated set of large ensemble atmosphere‐only simulations is used to investigate the impacts of observed Arctic sea ice‐driven variability (SIDV) on the atmospheric circulation during 1979–2014. The experimental protocol permits separating Arctic SIDV from internal variability and variability driven by other forcings including sea surface temperature and greenhouse gases. The geographic pattern of SIDV is consistent across seven participating models, but its magnitude strongly depends on ensemble size. Based on 130 members, winter SIDV is ~0.18 hPa2 for Arctic‐averaged sea level pressure (~1.5% of the total variance), and ~0.35 K2 for surface air temperature (~21%) at interannual and longer timescales. The results suggest that more than 100 (40) members are needed to separate Arctic SIDV from other components for dynamical (thermodynamical) variables, and insufficient ensemble size always leads to overestimation of SIDV. Nevertheless, SIDV is 0.75–1.5 times as large as the variability driven by other forcings over northern Eurasia and Arctic.
    Description: The authors thank Editor Christina Patricola and two anonymous reviewers for their comprehensive and insightful comments, which have led to improved presentation of this manuscript. We acknowledge support by the Blue‐Action Project (European Union's Horizon 2020 research and innovation program, 727852, http://www.blue‐action.eu/index.php?id = 3498). The WHOI‐NCAR group is also supported by the US National Science Foundation (NSF) Office of Polar Programs Grants 1736738 and 1737377, and their computing and data storage resources, including the Cheyenne supercomputer (doi:10.5065/D6RX99HX), were provided by the Computational and Information Systems Laboratory at NCAR. NCAR is a major facility sponsored by the U.S. NSF under Cooperative Agreement 1852977. The LOCEAN‐IPSL group was granted access to the HPC resources of TGCC under the Allocation A5‐017403 made by GENCI. The SST and SIC data were downloaded from the U.K. Met Office Hadley Centre Observations Datasets (http://www.metoffice.gov.uk/hadobs/hadisst).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 125(2), (2020): e2019JC015700, doi:10.1029/2019JC015700.
    Description: The formation mechanism as well as its temporal change of the North Pacific subtropical mode water (NPSTMW) is investigated using a 50‐year (1960–2009) ocean general circulation model hindcast. The volume budget analysis suggests that the formation of the NPSTMW is mainly controlled by the air‐sea interaction and ocean dynamics, but there is a regime shift of the relative importance between the two around late‐1980s. While the local air‐sea interaction process is a main driver of the NPSTMW formation prior to late‐1980s, ocean dynamics including the vertical entrainment become dominant since then. The NPSTMW formation is affected by the North Pacific Oscillation simultaneously in the early period, but with a few years lag in the later period. The interdecadal change of the driving mechanism of the interannual variability of the NPSTMW is probably due to the stronger (weaker) influence of local atmospheric forcing in the western North Pacific and unfavorable (favorable) wind stress curl condition for the remote oceanic forcing from the central North Pacific during the former (later) period. This regime shift may be related to the change of centers of the actions of the wind stress curl since the late‐1980s.
    Description: The CORE2 data set was obtained from https://data1.gfdl.noaa.gov/nomads/forms/core/COREv2.html. The World Ocean Atlas 2009 and the Polar Hydrographic Climatology data set were obtained from https://www.nodc.noaa.gov/OC5/WOA09/pr_woa09.html and http://psc.apl.washington.edu/nonwp_projects/PHC/Climatology.html, respectively. The OSCAR data were taken from https://podaac.jpl.nasa.gov/dataset/OSCAR_L4_OC_third‐deg. The database of mixed layer depth is downloaded from http://mixedlayer.ucsd.edu. The data set of the Argo floats was taken from http://uskess.whoi.edu/. The sea surface height data observed by the satellite are available from AVISO (http://www.aviso.altimetry.fr/duacs/). The EN4 data set was downloaded from https://www.metoffice.gov.uk/hadobs/en4/. This study was supported by the National Research Foundation of Korea (NRF) Grant NRF‐2009‐C1AAA001‐0093, funded by the Korea government (MEST). The numerical simulation in this paper was supported by the Supercomputing Center of Korea Institute of Science and Technology Information (KISTI), with its supercomputing resources and technical support (KSC‐2018‐CRE‐0117). Y.‐O. Kwon was funded by National Science Foundation (NSF) EaSM2 OCE‐1242989. Y. H. Kim was partly supported by research projects entitled “Investigation and prediction system development of marine heatwave around the Korean Peninsula originated from the subarctic and western Pacific” (20190344) funded by the Ministry of Oceans and Fisheries (MOF). G. Pak was supported by in‐house projects of the Korea Institute of Ocean Science & Technology (PE99711, PE99811).
    Description: 2020-09-07
    Keywords: Ocean general circulation model ; North Pacific subtropical mode water ; Kuroshio Extension ; Volume budget ; Regime shift ; North Pacific Oscillation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chen, Z., Kwon, Y.-O., Chen, K., Fratantoni, P., Gawarkiewicz, G., Joyce, T. M., Miller, T. J., Nye, J. A., Saba, V. S., & Stock, B. C. Seasonal prediction of bottom temperature on the Northeast U.S. Continental Shelf. Journal of Geophysical Research: Oceans, 126(5), (2021): e2021JC017187, https://doi.org/10.1029/2021JC017187.
    Description: The Northeast U.S. shelf (NES) is an oceanographically dynamic marine ecosystem and supports some of the most valuable demersal fisheries in the world. A reliable prediction of NES environmental variables, particularly ocean bottom temperature, could lead to a significant improvement in demersal fisheries management. However, the current generation of climate model-based seasonal-to-interannual predictions exhibits limited prediction skill in this continental shelf environment. Here, we have developed a hierarchy of statistical seasonal predictions for NES bottom temperatures using an eddy-resolving ocean reanalysis data set. A simple, damped local persistence prediction model produces significant skill for lead times up to ∼5 months in the Mid-Atlantic Bight and up to ∼10 months in the Gulf of Maine, although the prediction skill varies notably by season. Considering temperature from a nearby or upstream (i.e., more poleward) region as an additional predictor generally improves prediction skill, presumably as a result of advective processes. Large-scale atmospheric and oceanic indices, such as Gulf Stream path indices (GSIs) and the North Atlantic Oscillation Index, are also tested as predictors for NES bottom temperatures. Only the GSI constructed from temperature observed at 200 m depth significantly improves the prediction skill relative to local persistence. However, the prediction skill from this GSI is not larger than that gained using models incorporating nearby or upstream shelf/slope temperatures. Based on these results, a simplified statistical model has been developed, which can be tailored to fisheries management for the NES.
    Description: This work was supported by NOAA's Climate Program Office's Modeling, Analysis, Predictions, and Projections (MAPP) Program (NA17OAR4310111, NA19OAR4320074), and Climate Program Office's Climate Variability and Predictability (CVP) Program (NA20OAR4310482). We acknowledge our participation in MAPP's Marine Prediction Task Force.
    Keywords: Bottom temperature ; Northeast U.S. shelf ; Seasonal prediction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Reviews of Geophysics 57(2), (2019): 316-375, doi:10.1029/2019RG000644.
    Description: By synthesizing recent studies employing a wide range of approaches (modern observations, paleo reconstructions, and climate model simulations), this paper provides a comprehensive review of the linkage between multidecadal Atlantic Meridional Overturning Circulation (AMOC) variability and Atlantic Multidecadal Variability (AMV) and associated climate impacts. There is strong observational and modeling evidence that multidecadal AMOC variability is a crucial driver of the observed AMV and associated climate impacts and an important source of enhanced decadal predictability and prediction skill. The AMOC‐AMV linkage is consistent with observed key elements of AMV. Furthermore, this synthesis also points to a leading role of the AMOC in a range of AMV‐related climate phenomena having enormous societal and economic implications, for example, Intertropical Convergence Zone shifts; Sahel and Indian monsoons; Atlantic hurricanes; El Niño–Southern Oscillation; Pacific Decadal Variability; North Atlantic Oscillation; climate over Europe, North America, and Asia; Arctic sea ice and surface air temperature; and hemispheric‐scale surface temperature. Paleoclimate evidence indicates that a similar linkage between multidecadal AMOC variability and AMV and many associated climate impacts may also have existed in the preindustrial era, that AMV has enhanced multidecadal power significantly above a red noise background, and that AMV is not primarily driven by external forcing. The role of the AMOC in AMV and associated climate impacts has been underestimated in most state‐of‐the‐art climate models, posing significant challenges but also great opportunities for substantial future improvements in understanding and predicting AMV and associated climate impacts.
    Description: We thank the joint support from the US AMOC Science Team and the U.K.‐U.S. RAPID program for this review paper. The HADISST data set used in Figure 2 can be downloaded from https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html. Y. ‐O. K. is supported by the National Science Foundation (NSF; OCE‐1242989) and Department of Energy (DE‐SC0019492). S. G. Y. is partially supported by the NSF Collaborative Research EaSM2 grant OCE‐1243015. G. D. and S. G. Y. are supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement 1852977. D. E. A. was supported by an NSF postdoctoral fellowship. We would like to thank Ulysses Ninnemann and Nil Irvali for providing Figure 19. We thank Mike Winton and Xiaoqin Yan for the internal review of the manuscript.
    Keywords: Atlantic Meridional Overturning Circulation ; Atlantic Multidecadal Variability ; Decadal Predictability ; Climate Impacts ; Paleo Reconstructions ; Climate Model Biases
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-12-23
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 49(12), (2022): e2021GL097598, https://doi.org/10.1029/2021GL097598.
    Description: The ocean is inhomogeneous in hydrographic properties with diverse water masses. Yet, how this inhomogeneity has evolved in a rapidly changing climate has not been investigated. Using multiple observational and reanalysis datasets, we show that the spatial standard deviation (SSD) of the global ocean has increased by 1.4 ± 0.1% in temperature and 1.5 ± 0.1% in salinity since 1960. A newly defined thermohaline inhomogeneity index, a holistic measure of both temperature and salinity changes, has increased by 2.4 ± 0.1%. Climate model simulations suggest that the observed ocean inhomogeneity increase is dominated by anthropogenic forcing and projected to accelerate by 200%–300% during 2015–2100. Geographically, the rapid upper-ocean warming at mid-to-low latitudes dominates the temperature inhomogeneity increase, while the increasing salinity inhomogeneity is mainly due to the amplified salinity contrast between the subtropical and subpolar latitudes.
    Description: This work is supported by the Strategic Priority Research Program of Chinese Academy of Sciences (grant XDB42000000 and XDB40000000), the National Key R&D Program of China (2017YFA0603200), and the Shandong Provincial Natural Science Foundation (ZR2020JQ17), and the U.S. National Science Foundation Physical Oceanography Program (OCE- 2048336).
    Description: 2022-12-23
    Keywords: Global ocean ; Temperature ; Salinity ; Spatial inhomogeneity ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(3), (2019):1702-1708. doi:10.1029/2018GL081087.
    Description: After leaving the U.S. East Coast, the northward flowing Gulf Stream (GS) becomes a zonal jet and carries along its frontal characteristics of strong flow and sea surface temperature gradients into the North Atlantic at midlatitudes. The separation location where it leaves the coast is also an anchor point for the wintertime synoptic storm track across North America to continue to develop and head across the ocean. We examine the meridional variability of the separated GS path on interannual to decadal time scales as an agent for similar changes in the storm track and blocking variability at midtroposphere from 1979 to 2012. We find that periods of northerly (southerly) GS path are associated with increased (suppressed) excursions of the synoptic storm track to the northeast over the Labrador Sea and reduced (enhanced) Greenland blocking. In both instances, GS shifts lead those in the midtroposphere by a few months.
    Description: Our research has been conducted with the support of NSF (AGS‐1355339, OCE‐1419235, and OCE‐1242989), NASA (NNX13AM59G), and NOAA CPO Climate Variability and Predictability Program (NA13OAR4310139) grants to the Woods Hole Oceanographic Institution. We also thank three reviewers for their insightful comments on an earlier draft of this manuscript. Quarterly estimates of our Gulf Stream Index are available as a data file in the supporting information.
    Description: 2019-07-29
    Keywords: Gulf Stream path changes ; Wintertime atmospheric storm track ; Greenland blocking ; Intrerannual variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 47(1), (2020): e2019GL085455, doi:10.1029/2019GL085455.
    Description: The meridional coherence, connectivity, and regional inhomogeneity in long‐term sea surface temperature (SST) variability over the Northwest Atlantic continental shelf and slope from 1982–2018 are investigated using observational data sets. A meridionally concurrent large SST warming trend is identified as the dominant signal over the length of the continental shelf and slope between Cape Hatteras in North Carolina and Cape Chidley, Newfoundland and Labrador, Canada. The linear trends are 0.37 ± 0.06 and 0.39 ± 0.06 °C/decade for the shelf and slope regions, respectively. These meridionally averaged SST time series over the shelf and slope are consistent with each other and across multiple longer observational data sets with records dating back to 1900. The coherence between the long‐term meridionally averaged time series over the shelf and slope and basin‐wide averaged SST in the North Atlantic implies approximately two thirds of the warming trend during 1982–2018 may be attributed to natural climate variability and the rest to externally forced change including anthropogenic warming.
    Description: We are grateful to the Editor Dr. Kathleen Donohue and two anonymous reviewers. This work was supported by NOAA's Climate Program Office's Modeling, Analysis, Predictions, and Projections (MAPP) program (NA19OAR4320074). We acknowledge our participation in MAPP's Marine Prediction Task Force. The data of NOAA OISST used in this study are available at NOAA Earth System Research Laboratory (https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.highres.html). The HadISST data set is available at Met Office, Hadley Centre (https://www.metoffice.gov.uk/hadobs/hadisst/). The COBE SST and NOAA ERSST data sets are available at NOAA Earth System Research Laboratory's Physical Sciences Division (https://www.esrl.noaa.gov/psd/data/gridded/data.cobe.html; https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.v5.html). The near‐surface air temperature is available at Global Historical Climatology Network‐Monthly Database (https://www.ncdc.noaa.gov/data‐access/land‐based‐station‐data/land‐based‐datasets/global‐historical‐climatology‐network‐monthly‐version‐4). The data of SSH are available at Copernicus Marine Environment Monitoring Service (http://marine.copernicus.eu/services‐portfolio/access‐to‐products/?option=com_csw&view=details&product_id=SEALEVEL_GLO_PHY_ L4_REP_OBSERVATIONS_008_047).
    Description: 2020-07-06
    Keywords: Sea surface temperature ; Continental shelf ; Continental slope ; Long-term change ; Northwest Atlantic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-04-19
    Print ISSN: 2169-9275
    Electronic ISSN: 2169-9291
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...