ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1998-11-13
    Description: The fungal metabolite fumagillin suppresses the formation of new blood vessels, and a fumagillin analog is currently in clinical trials as an anticancer agent. The molecular target of fumagillin is methionine aminopeptidase-2 (MetAP-2). A 1.8 A resolution crystal structure of free and inhibited human MetAP-2 shows a covalent bond formed between a reactive epoxide of fumagillin and histidine-231 in the active site of MetAP-2. Extensive hydrophobic and water-mediated polar interactions with other parts of fumagillin provide additional affinity. Fumagillin-based drugs inhibit MetAP-2 but not MetAP-1, and the three-dimensional structure also indicates the likely determinants of this specificity. The structural basis for fumagillin's potency and specificity forms the starting point for structure-based drug design.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, S -- Widom, J -- Kemp, C W -- Crews, C M -- Clardy, J -- CA24487/CA/NCI NIH HHS/ -- CA59021/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1998 Nov 13;282(5392):1324-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉J. Clardy, Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853-1301, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9812898" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Aminopeptidases/antagonists & inhibitors/*chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Cyclohexanes ; Fatty Acids, Unsaturated/chemistry/*metabolism/pharmacology ; Humans ; Hydrogen Bonding ; Metalloendopeptidases/antagonists & inhibitors/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; Sequence Alignment ; Sesquiterpenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1991-05-10
    Description: The structure of the human FK506 binding protein (FKBP), complexed with the immunosuppressant FK506, has been determined to 1.7 angstroms resolution by x-ray crystallography. The conformation of the protein changes little upon complexation, but the conformation of FK506 is markedly different in the bound and unbound forms. The drug's association with the protein involves five hydrogen bonds, a hydrophobic binding pocket lined with conserved aromatic residues, and an unusual carbonyl binding pocket. The nature of this complex has implications for the mechanism of rotamase catalysis and for the biological actions of FK506 and rapamycin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Van Duyne, G D -- Standaert, R F -- Karplus, P A -- Schreiber, S L -- Clardy, J -- CA-24487/CA/NCI NIH HHS/ -- GM-38627/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 May 10;252(5007):839-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Baker Laboratory, Cornell University, Ithaca, NY 14853-1301.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1709302" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Bacterial Agents/*metabolism ; Binding Sites ; Carrier Proteins/*ultrastructure ; Humans ; *Immunosuppressive Agents ; Molecular Structure ; Tacrolimus ; Tacrolimus Binding Proteins ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-09-19
    Description: In all known organisms, amino acids are predominantly thought to be synthesized and used as their L-enantiomers. Here, we found that bacteria produce diverse D-amino acids as well, which accumulate at millimolar concentrations in supernatants of stationary phase cultures. In Vibrio cholerae, a dedicated racemase produced D-Met and D-Leu, whereas Bacillus subtilis generated D-Tyr and D-Phe. These unusual D-amino acids appear to modulate synthesis of peptidoglycan, a strong and elastic polymer that serves as the stress-bearing component of the bacterial cell wall. D-Amino acids influenced peptidoglycan composition, amount, and strength, both by means of their incorporation into the polymer and by regulating enzymes that synthesize and modify it. Thus, synthesis of D-amino acids may be a common strategy for bacteria to adapt to changing environmental conditions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2759711/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2759711/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lam, Hubert -- Oh, Dong-Chan -- Cava, Felipe -- Takacs, Constantin N -- Clardy, Jon -- de Pedro, Miguel A -- Waldor, Matthew K -- AI-R37-42347/AI/NIAID NIH HHS/ -- CA24487/CA/NCI NIH HHS/ -- GM086258/GM/NIGMS NIH HHS/ -- R01 CA024487/CA/NCI NIH HHS/ -- R01 CA024487-30/CA/NCI NIH HHS/ -- R01 GM086258/GM/NIGMS NIH HHS/ -- R01 GM086258-02/GM/NIGMS NIH HHS/ -- R37 AI042347/AI/NIAID NIH HHS/ -- R37 AI042347-14/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Sep 18;325(5947):1552-5. doi: 10.1126/science.1178123.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, and Howard Hughes Medical Institute, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19762646" target="_blank"〉PubMed〈/a〉
    Keywords: Alanine/chemistry/metabolism ; Amino Acid Isomerases/genetics/metabolism ; Amino Acids/chemistry/*metabolism ; Bacillus subtilis/growth & development/*metabolism/ultrastructure ; Cell Wall/*metabolism/ultrastructure ; Down-Regulation ; Glutamic Acid/chemistry/metabolism ; Isoleucine/metabolism ; Leucine/metabolism ; Methionine/metabolism ; Oligopeptides/chemistry ; Peptidoglycan/*biosynthesis/chemistry ; Polysaccharides/chemistry ; Stereoisomerism ; Valine/metabolism ; Vibrio cholerae/cytology/growth & development/*metabolism/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-10-03
    Description: Intraspecific chemical communication is mediated by signals called pheromones. Caenorhabditis elegans secretes a mixture of small molecules (collectively termed dauer pheromone) that regulates entry into the alternate dauer larval stage and also modulates adult behavior via as yet unknown receptors. Here, we identify two heterotrimeric GTP-binding protein (G protein)-coupled receptors (GPCRs) that mediate dauer formation in response to a subset of dauer pheromone components. The SRBC-64 and SRBC-66 GPCRs are members of the large Caenorhabditis-specific SRBC subfamily and are expressed in the ASK chemosensory neurons, which are required for pheromone-induced dauer formation. Expression of both, but not each receptor alone, confers pheromone-mediated effects on heterologous cells. Identification of dauer pheromone receptors will allow a better understanding of the signaling cascades that transduce the context-dependent effects of ecologically important chemical signals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4448937/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4448937/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Kyuhyung -- Sato, Koji -- Shibuya, Mayumi -- Zeiger, Danna M -- Butcher, Rebecca A -- Ragains, Justin R -- Clardy, Jon -- Touhara, Kazushige -- Sengupta, Piali -- F32 GM077943/GM/NIGMS NIH HHS/ -- P30 NS045713/NS/NINDS NIH HHS/ -- P30 NS45713/NS/NINDS NIH HHS/ -- R01 CA024487/CA/NCI NIH HHS/ -- R01 CA24487/CA/NCI NIH HHS/ -- R01 GM056223/GM/NIGMS NIH HHS/ -- R01 GM56223/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Nov 13;326(5955):994-8. doi: 10.1126/science.1176331. Epub 2009 Oct 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19797623" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/genetics/*growth & development/*physiology ; Caenorhabditis elegans Proteins/genetics/physiology ; Calcium/metabolism ; Cell Line ; Chemoreceptor Cells/metabolism ; Cyclic AMP/metabolism ; Cyclic GMP/metabolism ; GTP-Binding Protein alpha Subunits, Gi-Go/physiology ; Gene Expression Regulation, Developmental ; Genes, Helminth ; Guanylate Cyclase/antagonists & inhibitors/metabolism ; Hexoses/chemistry/physiology ; Humans ; Mutation ; Pheromones/*physiology ; Receptors, G-Protein-Coupled ; Reproduction ; Signal Transduction ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-05-01
    Description: Bacteria form communities known as biofilms, which disassemble over time. In our studies outlined here, we found that, before biofilm disassembly, Bacillus subtilis produced a factor that prevented biofilm formation and could break down existing biofilms. The factor was shown to be a mixture of D-leucine, D-methionine, D-tyrosine, and D-tryptophan that could act at nanomolar concentrations. D-amino acid treatment caused the release of amyloid fibers that linked cells in the biofilm together. Mutants able to form biofilms in the presence of D-amino acids contained alterations in a protein (YqxM) required for the formation and anchoring of the fibers to the cell. D-amino acids also prevented biofilm formation by Staphylococcus aureus and Pseudomonas aeruginosa. D-amino acids are produced by many bacteria and, thus, may be a widespread signal for biofilm disassembly.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2921573/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2921573/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kolodkin-Gal, Ilana -- Romero, Diego -- Cao, Shugeng -- Clardy, Jon -- Kolter, Roberto -- Losick, Richard -- CA24487/CA/NCI NIH HHS/ -- GM086258/GM/NIGMS NIH HHS/ -- GM18546/GM/NIGMS NIH HHS/ -- GM58213/GM/NIGMS NIH HHS/ -- R01 GM018568/GM/NIGMS NIH HHS/ -- R01 GM018568-39/GM/NIGMS NIH HHS/ -- R01 GM058213/GM/NIGMS NIH HHS/ -- R01 GM086258/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Apr 30;328(5978):627-9. doi: 10.1126/science.1188628.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20431016" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acids/*metabolism/pharmacology ; Bacillus subtilis/*physiology ; Bacterial Proteins/chemistry/metabolism ; *Biofilms/growth & development ; Cell Wall ; Culture Media, Conditioned ; Genes, Bacterial ; Leucine/metabolism/pharmacology ; Methionine/metabolism/pharmacology ; Molecular Sequence Data ; Mutation ; Pseudomonas aeruginosa/physiology ; Staphylococcus aureus/physiology ; Stereoisomerism ; Tryptophan/metabolism/pharmacology ; Tyrosine/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1996-07-12
    Description: Rapamycin, a potent immunosuppressive agent, binds two proteins: the FK506-binding protein (FKBP12) and the FKBP-rapamycin-associated protein (FRAP). A crystal structure of the ternary complex of human FKBP12, rapamycin, and the FKBP12-rapamycin-binding (FRB) domain of human FRAP at a resolution of 2.7 angstroms revealed the two proteins bound together as a result of the ability of rapamycin to occupy two different hydrophobic binding pockets simultaneously. The structure shows extensive interactions between rapamycin and both proteins, but fewer interactions between the proteins. The structure of the FRB domain of FRAP clarifies both rapamycin-independent and -dependent effects observed for mutants of FRAP and its homologs in the family of proteins related to the ataxia-telangiectasia mutant gene product, and it illustrates how a small cell-permeable molecule can mediate protein dimerization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Choi, J -- Chen, J -- Schreiber, S L -- Clardy, J -- CA59021/CA/NCI NIH HHS/ -- GM38625/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Jul 12;273(5272):239-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Baker Laboratory, Cornell University, Ithaca, NY 14853-1301, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8662507" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Carrier Proteins/chemistry/genetics/*metabolism ; Crystallography, X-Ray ; DNA-Binding Proteins/chemistry/*metabolism ; Heat-Shock Proteins/chemistry/*metabolism ; Humans ; *Immunophilins ; Models, Molecular ; Mutation ; *Phosphotransferases (Alcohol Group Acceptor) ; Polyenes/*chemistry/*metabolism ; *Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry/metabolism ; Sirolimus ; TOR Serine-Threonine Kinases ; Tacrolimus Binding Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-10-04
    Description: Host-microbe symbioses play a critical role in the evolution of biological diversity and complexity. In a notably intricate system, southern pine beetles use symbiotic fungi to help overcome host-tree defenses and to provide nutrition for their larvae. We show that this beetle-fungal mutualism is chemically mediated by a bacterially produced polyunsaturated peroxide. The molecule's selective toxicity toward the beetle's fungal antagonist, combined with the prevalence and localization of its bacterial source, indicates an insect-microbe association that is both mutualistic and coevolved. This unexpected finding in a well-studied system indicates that mutualistic associations between insects and antibiotic-producing bacteria are more common than currently recognized and that identifying their small-molecule mediators can provide a powerful search strategy for therapeutically useful antimicrobial compounds.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2761720/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2761720/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scott, Jarrod J -- Oh, Dong-Chan -- Yuceer, M Cetin -- Klepzig, Kier D -- Clardy, Jon -- Currie, Cameron R -- R01 CA024487/CA/NCI NIH HHS/ -- R01 CA024487-29/CA/NCI NIH HHS/ -- R01 CA024487-30/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2008 Oct 3;322(5898):63. doi: 10.1126/science.1160423.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bacteriology, University of Wisconsin-Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18832638" target="_blank"〉PubMed〈/a〉
    Keywords: Acetates/chemistry/*metabolism/pharmacology ; Actinobacteria/isolation & purification/*metabolism ; Agaricus ; Animals ; Antibiosis ; Antifungal Agents/*biosynthesis/chemistry/pharmacology ; Ascomycota/*physiology ; Basidiomycota/*physiology ; Beetles/growth & development/*microbiology/physiology ; Biological Evolution ; Larva/growth & development/microbiology ; Peroxides/chemistry/*metabolism/pharmacology ; Pinus/microbiology ; Symbiosis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-10-12
    Description: Population density-dependent dispersal is a well-characterized strategy of animal behavior in which dispersal rate increases when population density is higher. Caenorhabditis elegans shows positive chemotaxis to a set of odorants, but the chemotaxis switches from attraction to dispersal after prolonged exposure to the odorants. We show here that this plasticity of olfactory behavior is dependent on population density and that this regulation is mediated by pheromonal signaling. We show that a peptide, suppressor of NEP-2 (SNET-1), negatively regulates olfactory plasticity and that its expression is down-regulated by the pheromone. NEP-2, a homolog of the extracellular peptidase neprilysin, antagonizes SNET-1, and this function is essential for olfactory plasticity. These results suggest that population density information is transmitted through the external pheromone and endogenous peptide signaling to modulate chemotactic behavior.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3021133/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3021133/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yamada, Koji -- Hirotsu, Takaaki -- Matsuki, Masahiro -- Butcher, Rebecca A -- Tomioka, Masahiro -- Ishihara, Takeshi -- Clardy, Jon -- Kunitomo, Hirofumi -- Iino, Yuichi -- CA24487/CA/NCI NIH HHS/ -- GM087533/GM/NIGMS NIH HHS/ -- K99 GM087533/GM/NIGMS NIH HHS/ -- K99 GM087533-01/GM/NIGMS NIH HHS/ -- R00 GM087533/GM/NIGMS NIH HHS/ -- R00 GM087533-03/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Sep 24;329(5999):1647-50. doi: 10.1126/science.1192020.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0032, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20929849" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Physiological ; Animals ; Caenorhabditis elegans/genetics/*physiology ; Caenorhabditis elegans Proteins/genetics/*metabolism ; *Chemotaxis ; Down-Regulation ; Gene Expression Regulation ; Mutation ; Neprilysin/genetics/*metabolism ; Neurites/metabolism ; Neurons/metabolism ; Odors ; Olfactory Pathways/cytology/physiology ; Pheromones/*metabolism ; Population Density ; Recombinant Fusion Proteins/metabolism ; Repressor Proteins/genetics/*metabolism ; *Signal Transduction ; Smell/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-07-07
    Description: Microbial populations stochastically generate variants with strikingly different properties, such as virulence or avirulence and antibiotic tolerance or sensitivity. Photorhabdus luminescens bacteria have a variable life history in which they alternate between pathogens to a wide variety of insects and mutualists to their specific host nematodes. Here, we show that the P. luminescens pathogenic variant (P form) switches to a smaller-cell variant (M form) to initiate mutualism in host nematode intestines. A stochastic promoter inversion causes the switch between the two distinct forms. M-form cells are much smaller (one-seventh the volume), slower growing, and less bioluminescent than P-form cells; they are also avirulent and produce fewer secondary metabolites. Observations of form switching by individual cells in nematodes revealed that the M form persisted in maternal nematode intestines, were the first cells to colonize infective juvenile (IJ) offspring, and then switched to P form in the IJ intestine, which armed these nematodes for the next cycle of insect infection.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4006969/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4006969/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Somvanshi, Vishal S -- Sloup, Rudolph E -- Crawford, Jason M -- Martin, Alexander R -- Heidt, Anthony J -- Kim, Kwi-suk -- Clardy, Jon -- Ciche, Todd A -- 1K99 GM097096-01/GM/NIGMS NIH HHS/ -- K99 GM097096/GM/NIGMS NIH HHS/ -- R00 GM097096/GM/NIGMS NIH HHS/ -- R01 GM086258/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Jul 6;337(6090):88-93. doi: 10.1126/science.1216641.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22767929" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Fimbriae Proteins/genetics ; Gene Expression Regulation, Bacterial ; Genome, Bacterial ; Intestines/microbiology ; Moths/*microbiology ; Mutation ; Phenotype ; Photorhabdus/cytology/*genetics/growth & development/*pathogenicity ; *Promoter Regions, Genetic ; Rhabditoidea/*microbiology ; *Sequence Inversion ; *Symbiosis ; Virulence/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1983-06-03
    Description: Certain isolates of the plant-pathogenic fungus Stemphylium botryosum produce a phytotoxin, stemphyloxin I. This toxin (C(21)H(34)O(6)) was crystallized and its structure was determined by x-ray crystallography to be a beta-ketoaldehyde trans-Decalin. This compound is a highly unusual natural product. Iron (Fe(3+)) controls production of toxin by this fungus. Furthermore, iron reacts with the toxin to yield a colored product which aids in its detection on chromatograms and in its quantitative estimation by colorimetry.;〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barash, I -- Manulis, S -- Kashman, Y -- Springer, J P -- Chen, M H -- Clardy, J -- Strobel, G A -- New York, N.Y. -- Science. 1983 Jun 3;220(4601):1065-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17754554" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...