ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mice  (4)
  • Chemistry
  • American Association for the Advancement of Science (AAAS)  (4)
  • 2005-2009  (4)
  • 1
    Publication Date: 2007-09-18
    Description: Antibodies play a central role in immunity by forming an interface with the innate immune system and, typically, mediate proinflammatory activity. We describe a novel posttranslational modification that leads to anti-inflammatory activity of antibodies of immunoglobulin G, isotype 4 (IgG4). IgG4 antibodies are dynamic molecules that exchange Fab arms by swapping a heavy chain and attached light chain (half-molecule) with a heavy-light chain pair from another molecule, which results in bispecific antibodies. Mutagenesis studies revealed that the third constant domain is critical for this activity. The impact of IgG4 Fab arm exchange was confirmed in vivo in a rhesus monkey model with experimental autoimmune myasthenia gravis. IgG4 Fab arm exchange is suggested to be an important biological mechanism that provides the basis for the anti-inflammatory activity attributed to IgG4 antibodies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van der Neut Kolfschoten, Marijn -- Schuurman, Janine -- Losen, Mario -- Bleeker, Wim K -- Martinez-Martinez, Pilar -- Vermeulen, Ellen -- den Bleker, Tamara H -- Wiegman, Luus -- Vink, Tom -- Aarden, Lucien A -- De Baets, Marc H -- van de Winkel, Jan G J -- Aalberse, Rob C -- Parren, Paul W H I -- New York, N.Y. -- Science. 2007 Sep 14;317(5844):1554-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sanquin Research-AMC Landsteiner Laboratory, Department of Immunopathology, Plesmanlaan 125, 1066 CX Amsterdam, the Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17872445" target="_blank"〉PubMed〈/a〉
    Keywords: Allergens/immunology ; Animals ; Antibodies, Bispecific/immunology ; Antibodies, Monoclonal/immunology ; Antigens, CD20/immunology ; Antigens, Plant ; Autoantibodies/immunology ; Glycoproteins/immunology ; Humans ; Immunoglobulin Constant Regions/chemistry ; Immunoglobulin Fab Fragments/*chemistry/*immunology/metabolism ; Immunoglobulin G/*chemistry/*immunology/metabolism ; Immunoglobulin Heavy Chains ; Macaca mulatta ; Mice ; Mutation ; Myasthenia Gravis, Autoimmune, Experimental/immunology/prevention & control ; Protein Processing, Post-Translational ; Receptor, Epidermal Growth Factor/immunology ; Receptors, Cholinergic/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-01-28
    Description: The transition of DNA secondary structure from an analogous B to Z conformation modulates the dielectric environment of the single-walled carbon nanotube (SWNT) around which it is adsorbed. The SWNT band-gap fluorescence undergoes a red shift when an encapsulating 30-nucleotide oligomer is exposed to counter ions that screen the charged backbone. The transition is thermodynamically identical for DNA on and off the nanotube, except that the propagation length of the former is shorter by five-sixths. The magnitude of the energy shift is described by using an effective medium model and the DNA geometry on the nanotube sidewall. We demonstrate the detection of the B-Z change in whole blood, tissue, and from within living mammalian cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heller, Daniel A -- Jeng, Esther S -- Yeung, Tsun-Kwan -- Martinez, Brittany M -- Moll, Anthonie E -- Gastala, Joseph B -- Strano, Michael S -- New York, N.Y. -- Science. 2006 Jan 27;311(5760):508-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16439657" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Absorption ; Adsorption ; Animals ; Cations, Divalent/chemistry ; Chickens ; Circular Dichroism ; DNA/blood/*chemistry ; DNA, Z-Form/blood/*chemistry ; Fluorescence ; Mathematics ; Mercury/analysis ; Mice ; Models, Molecular ; Muscle, Skeletal/chemistry ; *Nanotubes, Carbon ; *Nucleic Acid Conformation ; Oligodeoxyribonucleotides/chemistry ; Spectrometry, Fluorescence ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-08-02
    Description: Peripheral pain pathways are activated by a range of stimuli. We used diphtheria toxin to kill all mouse postmitotic sensory neurons expressing the sodium channel Nav1.8. Mice showed normal motor activity and low-threshold mechanical and acute noxious heat responses but did not respond to noxious mechanical pressure or cold. They also showed a loss of enhanced pain responses and spontaneous pain behavior upon treatment with inflammatory insults. In contrast, nerve injury led to heightened pain sensitivity to thermal and mechanical stimuli indistinguishable from that seen with normal littermates. Pain behavior correlates well with central input from sensory neurons measured electrophysiologically in vivo. These data demonstrate that Na(v)1.8-expressing neurons are essential for mechanical, cold, and inflammatory pain but not for neuropathic pain or heat sensing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abrahamsen, Bjarke -- Zhao, Jing -- Asante, Curtis O -- Cendan, Cruz Miguel -- Marsh, Steve -- Martinez-Barbera, Juan Pedro -- Nassar, Mohammed A -- Dickenson, Anthony H -- Wood, John N -- BB/F000227/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- G9717869/Medical Research Council/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2008 Aug 1;321(5889):702-5. doi: 10.1126/science.1156916.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Nociception Group, University College London (UCL), Gower Street, London, WC1E 6BT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18669863" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cold Temperature ; Electrophysiology ; Freund's Adjuvant ; Hot Temperature ; Inflammation/*physiopathology ; Mice ; Mice, Knockout ; NAV1.8 Voltage-Gated Sodium Channel ; Neurons, Afferent/*physiology ; Nociceptors/physiology ; Pain/*physiopathology ; Pain Measurement ; Pain Threshold ; Pressure ; Sodium Channels/genetics/*metabolism ; TRPV Cation Channels/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-07-25
    Description: A fundamental function of CD4+ helper T (T(H)) cells is the regulation of B cell-mediated humoral immunity. Development of T follicular helper (T(FH)) cells that provide help to B cells is mediated by the cytokines interleukin-6 and interleukin-21 but is independent of TH1, TH2, and TH17 effector cell lineages. Here, we characterize the function of Bcl6, a transcription factor selectively expressed in T(FH) cells. Bcl6 expression is regulated by interleukin-6 and interleukin-21. Bcl6 overexpression induced T(FH)-related gene expression and inhibited other T(H) lineage cell differentiation in a DNA binding-dependent manner. Moreover, Bcl6 deficiency in T cells resulted in impaired T(FH) cell development and germinal center reactions, and altered production of other effector T cell subsets. Our data thus illustrate that Bcl6 is required for programming of T(FH) cell generation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857334/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857334/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nurieva, Roza I -- Chung, Yeonseok -- Martinez, Gustavo J -- Yang, Xuexian O -- Tanaka, Shinya -- Matskevitch, Tatyana D -- Wang, Yi-Hong -- Dong, Chen -- R01 AI050746/AI/NIAID NIH HHS/ -- R01 AI050746-05/AI/NIAID NIH HHS/ -- R01 AI050761/AI/NIAID NIH HHS/ -- R01 AI050761-05/AI/NIAID NIH HHS/ -- R01 AI050761-06/AI/NIAID NIH HHS/ -- R01 AI050761-07A1/AI/NIAID NIH HHS/ -- R01 AI083761/AI/NIAID NIH HHS/ -- R01 AR050772/AR/NIAMS NIH HHS/ -- R01 AR050772-07/AR/NIAMS NIH HHS/ -- R01 AR050772-08/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Aug 21;325(5943):1001-5. doi: 10.1126/science.1176676. Epub 2009 Jul 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, M. D. Anderson Cancer Center, Houston, TX 77030, USA. rnurieva@mdanderson.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19628815" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibody Formation ; B-Lymphocytes/immunology ; Cell Differentiation ; Cell Lineage ; Cytokines/immunology/metabolism ; DNA-Binding Proteins/deficiency/genetics/*metabolism ; Germinal Center/cytology/*immunology ; Immunoglobulins/biosynthesis ; Interleukin-6/immunology/metabolism ; Interleukins/immunology/metabolism ; Lymphocyte Activation ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Mutation ; RNA, Messenger/genetics/metabolism ; T-Lymphocyte Subsets/cytology/*immunology ; T-Lymphocytes, Helper-Inducer/cytology/*immunology ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...