ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (39)
  • ASLO (Association for the Sciences of Limnology and Oceanography)  (39)
  • 1
    Publication Date: 2021-04-23
    Description: Nitrogen (N) is the major limiting nutrient for phytoplankton growth and productivity in large parts of the world's oceans. Differential preferences for specific N substrates may be important in controlling phytoplankton community composition. To date, there is limited information on how specific N substrates influence the composition of naturally occurring microbial communities. We investigated the effect of nitrate ( math formula), ammonium ( math formula), and urea on microbial and phytoplankton community composition (cell abundances and 16S rRNA gene profiling) and functioning (photosynthetic activity, carbon fixation rates) in the oligotrophic waters of the North Pacific Ocean. All N substrates tested significantly stimulated phytoplankton growth and productivity. Urea resulted in the greatest (〉300%) increases in chlorophyll a (〈0.06 μg L−1 and ∼0.19 μg L−1 in the control and urea addition, respectively) and productivity (〈0.4 μmol C L−1 d−1 and ∼1.4 μmol C L−1 d−1 in the control and urea addition, respectively) at two experimental stations, largely due to increased abundances of Prochlorococcus (Cyanobacteria). Two abundant clades of Prochlorococcus, High Light I and II, demonstrated similar responses to urea, suggesting this substrate is likely an important N source for natural Prochlorococcus populations. In contrast, the heterotrophic community composition changed most in response to math formula. Finally, the time and magnitude of response to N amendments varied with geographic location, likely due to differences in microbial community composition and their nutrient status. Our results provide support for the hypothesis that changes in N supply would likely favor specific populations of phytoplankton in different oceanic regions and thus, affect both biogeochemical cycles and ecological processes.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-08-08
    Description: Recent empirical and statistical evidence suggest that propagule pressure (i.e., number of individuals introduced per event, and the number and frequency of events) and colonization pressure (i.e., number of species released per event, and the number and frequency of events) are of vital importance to invasion success. To explore possible changes in propagule and colonization pressure during the transport stage of the invasion process, we examine abundance and species richness of virus-like particles, bacteria, diatoms, dinoflagellates, and invertebrates transported in commercial ships—a leading vector for global spread of aquatic nonindigenous species. We collected 154 ballast water samples from ships that had performed or were exempt from ballast water exchange (BWE) prior to arrival at Pacific and Atlantic ports in Canada and Laurentian Great Lakes ports. We found that abundance and species richness varied across taxa and regions, with ships arriving to the Atlantic region carrying the highest abundance of taxa. The highest species richness of invertebrates and diatoms was recorded from ships arriving to the Pacific, whereas the richest communities of dinoflagellates occurred in the Atlantic region. We also found that BWE had no effect on abundance or species richness of most taxa (dinoflagellates, diatoms, bacteria, and virus-like particles), whereas the effect on abundance of invertebrates was not clear. Finally, longer voyages resulted in lower abundance of all taxa except dinoflagellates, and lower species richness of diatoms. Paradoxically, the elevated abundance and species richness of dinoflagellates following BWE suggest that this group could have enhanced invasion potential when ships manage ballast water by exchange.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-25
    Description: Although N2-fixing cyanobacteria contribute significantly to oceanic sequestration of atmospheric CO2, little is known about how N2 fixation and carbon fixation (primary production) interact in natural populations of marine cyanobacteria. In a developing cyanobacterial bloom in the Baltic Sea, rates of N2 fixation (acetylene reduction) showed both diurnal and longer-term fluctuations. The latter reflected fluctuations in the nitrogen status of the cyanobacterial population and could be correlated with variations in the ratio of acetylene reduced to 15N2 assimilated. The value of this ratio may provide useful information about the release of newly fixed nitrogen by a cyanobacterial population. However, although the diurnal fluctuations in N2 fixation broadly paralleled diurnal fluctuations in carbon fixation, the longer-term fluctuations in these two processes were out of phase.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 61 (2). pp. 666-683.
    Publication Date: 2019-02-01
    Description: A multitracer approach is applied to assess the impact of boundary fluxes (e.g., benthic input from sediments or lateral inputs from the coastline) on the acid-base buffering capacity, and overall biogeochemistry, of the North Sea. Analyses of both basin-wide observations in the North Sea and transects through tidal basins at the North-Frisian coastline, reveal that surface distributions of the δ13C signature of dissolved inorganic carbon (DIC) are predominantly controlled by a balance between biological production and respiration. In particular, variability in metabolic DIC throughout stations in the well-mixed southern North Sea indicates the presence of an external carbon source, which is traced to the European continental coastline using naturally occurring radium isotopes (224Ra and 228Ra). 228Ra is also shown to be a highly effective tracer of North Sea total alkalinity (AT) compared to the more conventional use of salinity. Coastal inputs of metabolic DIC and AT are calculated on a basin-wide scale, and ratios of these inputs suggest denitrification as a primary metabolic pathway for their formation. The AT input paralleling the metabolic DIC release prevents a significant decline in pH as compared to aerobic (i.e., unbuffered) release of metabolic DIC. Finally, long-term pH trends mimic those of riverine nitrate loading, highlighting the importance of coastal AT production via denitrification in regulating pH in the southern North Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-03-09
    Description: We examined the physiological responses of steady-state iron (Fe)-replete and Fe-limited cultures of the biogeochemically critical marine unicellular diazotrophic cyanobacterium Crocosphaera at glacial (19 Pa; 190 ppm), current (39 Pa; 380 ppm), and projected year 2100 (76 Pa; 750 ppm) CO2 levels. Rates of N2 and CO2 fixation and growth increased in step with increasing partial pressure of CO2 (pCO2), but only under Fe-replete conditions. N2 and carbon fixation rates at 75 Pa CO2 were 1.4-1.8-fold and 1.2-2.0-fold higher, respectively, relative to those at present day and glacial pCO2 levels. In Fe-replete cultures, cellular Fe and molybdenum quotas varied threefold and were linearly related to N2 fixation rates and to external pCO2. However, N2 fixation and trace metal quotas were decoupled from pCO2 in Fe-limited Crocosphaera. Higher CO2 and Fe concentrations both resulted in increased cellular pigment contents and affected photosynthesis vs. irradiance parameters. If these results also apply to natural Crocosphaera populations, anthropogenic CO2 enrichment could substantially increase global oceanic N2 and CO2 fixation, but this effect may be tempered by Fe availability. Possible biogeochemical consequences may include elevated inputs of new nitrogen to the ocean and increased potential for Fe and/or phosphorus limitation in the future high-CO2 ocean, and feedbacks to atmospheric pCO2 in both the near future and over glacial to interglacial timescales.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 54 (6). pp. 2283-2297.
    Publication Date: 2017-10-24
    Description: While there is a general sense that lakes can act as sentinels of climate change, their efficacy has not been thoroughly analyzed. We identified the key response variables within a lake that act as indicators of the effects of climate change on both the lake and the catchment. These variables reflect a wide range of physical, chemical, and biological responses to climate. However, the efficacy of the different indicators is affected by regional response to climate change, characteristics of the catchment, and lake mixing regimes. Thus, particular indicators or combinations of indicators are more effective for different lake types and geographic regions. The extraction of climate signals can be further complicated by the influence of other environmental changes, such as eutrophication or acidification, and the equivalent reverse phenomena, in addition to other land-use influences. In many cases, however, confounding factors can be addressed through analytical tools such as detrending or filtering. Lakes are effective sentinels for climate change because they are sensitive to climate, respond rapidly to change, and integrate information about changes in the catchment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-08-14
    Description: We quantify, compare, and generalize responses of experimental nutrient loadings (LN) on planktonic community structure and function in coastal waters. Data were derived from three mesocosm experiments undertaken in Baltic (BAL), Mediterranean (MED), and Norwegian (NOR) coastal waters. A planktonic model with seven functional compartments and 30-32 different carbon flows fit to all three experiments was used as a framework for flow-rate estimation and comparison. Flows were estimated on the basis of time series of measured biomass, some measured flows, and inverse modeling. Biomass and gross uptake rate of carbon of most groups increased linearly with increasing LN in the nutrient input range of 0-1 µmol N L-1 d-1 at all locations. The fate of the gross primary production (GPP) was similar in all systems. Autotrophic biomass varied by two orders of magnitude among locations, with the lowest biomass and response to nutrient addition in MED waters. The variation of GPP among sites was less than one order of magnitude. Mesozooplankton dominated by doliolids (Tunicata), but not those dominated by copepods, presumably exerted efficient control of the autotrophic biomass, thereby buffering responses of autotrophs to high nutrient input. Among the many factors that can modify the responses of autotrophs to nutrients, the time scale over which the enrichment is made and the precise mode of nutrient enrichment are important. We suggest a general concept that may contribute to a scientific basis for understanding and managing coastal eutrophication
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 53 . pp. 1722-1733.
    Publication Date: 2017-05-02
    Description: Identification of the proximal nutrient limiting primary production is a necessary first step toward evaluating the physiological state of phytoplankton communities and the biogeochemical constraints on the current oceanic carbon cycle. We conducted 48-h nutrient addition bioassay experiments to evaluate nitrogen, phosphorus, and iron limitation of primary productivity, net chlorophyll synthesis, and net increase in cell numbers of the dominant picophytoplankton from the tropical North Atlantic. Our results indicate that N was the proximal limiting factor for primary production during the autumn of 2002, followed by P and then Fe. Net chlorophyll synthesis was significantly stimulated by addition of N alone and further stimulated by addition of P. Analysis of picophytoplankton populations by analytical flow cytometry revealed a more complex response. Cellular red fluorescence, an index of cell chlorophyll content, increased in Prochlorococcus, Synechococcus, and picoeukaryotes in response to addition of NH4NO3 but was not affected by single or combined additions of P and Fe. In contrast, cell abundance in these picophytoplankton populations increased only after combined N and P (63% of comparisons) or N and Fe (21% of comparisons) additions. Thus, our experiments revealed that chlorophyll synthesis and primary production were limited by the availability of nitrogen alone, while net increase in cell abundance was colimited by N and P or N and Fe in the majority of these picophytoplankton populations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 58 (3). pp. 1113-1122.
    Publication Date: 2019-09-23
    Description: Sinking of gelatinous zooplankton biomass is an important component of the biological pump removing carbon from the upper ocean. The export efficiency, e.g., how much biomass reaches the ocean interior sequestering carbon, is poorly known because of the absence of reliable sinking speed data. We measured sinking rates of gelatinous particulate organic matter (jelly-POM) from different species of scyphozoans, ctenophores, thaliaceans, and pteropods, both in the field and in the laboratory in vertical columns filled with seawater using high-quality video. Using these data, we determined taxon-specific jelly-POM export efficiencies using equations that integrate biomass decay rate, seawater temperature, and sinking speed. Two depth scenarios in several environments were considered, with jelly-POM sinking from 200 and 600 m in temperate, tropical, and polar regions. Jelly-POM sank on average between 850 and 1500 m d−1 (salps: 800–1200 m d−1; ctenophores: 1200–1500 m d−1; scyphozoans: 1000–1100 m d−1; pyrosomes: 1300 m d−1). High latitudes represent a fast-sinking and low-remineralization corridor, regardless of species. In tropical and temperate regions, significant decomposition takes place above 1500 m unless jelly-POM sinks below the permanent thermocline. Sinking jelly-POM sequesters carbon to the deep ocean faster than anticipated, and should be incorporated into biogeochemical and modeling studies to provide more realistic quantification of export via the biological carbon pump worldwide.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-08-14
    Description: Bacterial productivity and biomass are thought to be limited by dissolved organic carbon (DOC) in much of the world’s oceans. However, the mixed layer of oligotrophic oceans is often depleted in dissolved inorganic nitrogen and phosphate, raising the possibility that macronutrients may also limit heterotrophic bacterial growth. We used nutrient bioassay experiments to determine whether inorganic nutrients (N, P, Fe) and/or DOC could limit bacterial productivity and biomass in the central North Atlantic during the spring of 2004 (Mar–Apr). We observed that both heterotrophic bacterial productivity and biomass were co-limited by N and P in the oligotrophic North Atlantic, and additions of labile DOC (glucose) provided no stimulation unless N and P were also added. Flow cytometry results indicated that only a small subset of large cells high in nucleic acid content were responsible for the increased productivity in the combined NP amendments. In contrast, nutrient additions elicited no net change on the dominant component of the bacterial population, composed of small cells with relatively low nucleic acid content. In the combined NP treatments the relative increase in bacterial production was greater than that measured when phytoplankton productivity was relieved of nitrogen limitation. These results suggest that N and P co-limitation in the bacterial community results in increased competition between the heterotrophic and autotrophic components of the surface communities in the Central North Atlantic Ocean, and potentially impacts the cycling of organic matter by the bacterioplankton.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...