ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-09-23
    Description: A natural carbon dioxide (CO2) seep was discovered during an expedition to the southern German North Sea (October 2008). Elevated CO2 levels of ∼10–20 times above background were detected in seawater above a natural salt dome ∼30 km north of the East-Frisian Island Juist. A single elevated value 53 times higher than background was measured, indicating a possible CO2 point source from the seafloor. Measured pH values of around 6.8 support modeled pH values for the observed high CO2 concentration. These results are presented in the context of CO2 seepage detection, in light of proposed subsurface CO2 sequestering and growing concern of ocean acidification. We explore the boundary conditions of CO2 bubble and plume seepage and potential flux paths to the atmosphere. Shallow bubble release experiments conducted in a lake combined with discrete-bubble modeling suggest that shallow CO2 outgassing will be difficult to detect as bubbles dissolve very rapidly (within meters). Bubble-plume modeling further shows that a CO2 plume will lose buoyancy quickly because of rapid bubble dissolution while the newly CO2-enriched water tends to sink toward the seabed. Results suggest that released CO2 will tend to stay near the bottom in shallow systems (〈200 m) and will vent to the atmosphere only during deep water convection (water column turnover). While isotope signatures point to a biogenic source, the exact origin is inconclusive because of dilution. This site could serve as a natural laboratory to further study the effects of carbon sequestration below the seafloor.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-04-26
    Description: Submersible dives on 22 active submarine volcanoes on the Mariana and Tonga-Kermadec arcs have discovered systems on six of these volcanoes that, in addition to discharging hot vent fluid, are also venting a separate CO2-rich phase either in the form of gas bubbles or liquid CO2 droplets. One of the most impressive is the Champagne vent site on NW Eifuku in the northern Mariana Arc, which is discharging cold droplets of liquid CO2 at an estimated rate of 23 mol CO2/s, about 0.1% of the global mid-ocean ridge (MOR) carbon flux. Three other Mariana Arc submarine volcanoes (NW Rota-1, Nikko, and Daikoku), and two volcanoes on the Tonga-Kermadec Arc (Giggenbach and Volcano-1) also have vent fields discharging CO2-rich gas bubbles. The vent fluids at these volcanoes have very high CO2 concentrations and elevated C/3He and δ 13C (CO2) ratios compared to MOR systems, indicating a contribution to the carbon flux from subducted marine carbonates and organic material. Analysis of the CO2 concentrations shows that most of the fluids are undersaturated with CO2. This deviation from equilibrium would not be expected for pressure release degassing of an ascending fluid saturated with CO2. Mechanisms to produce a separate CO2-rich gas phase at the seafloor require direct injection of magmatic CO2-rich gas. The ascending CO2-rich gas could then partially dissolve into seawater circulating within the volcano edifice without reaching equilibrium. Alternatively, an ascending high-temperature, CO2-rich aqueous fluid could boil to produce a CO2-rich gas phase and a CO2-depleted liquid. These findings indicate that carbon fluxes from submarine arcs may be higher than previously estimated, and that experiments to estimate carbon fluxes at submarine arc volcanoes are merited. Hydrothermal sites such as these with a separate gas phase are valuable natural laboratories for studying the effects of high CO2 concentrations on marine ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-03-01
    Description: Serpentinized peridotite and gabbronorite represent the host rocks to the active, ultramafic-hosted Logatchev hydrothermal field at the Mid-Atlantic Ridge. We use trace element, δ18O and 87Sr/86Sr data from bulk rock samples and mineral separates in order to constrain the controls on the geochemical budget within the Logatchev hydrothermal system. The trace element data of serpentinized peridotite show strong compositional variations indicating a range of processes. Some peridotites experienced geochemical modifications associated with melt-rock interaction processes prior to serpentinization, which resulted in positive correlations of increasing high field strength element (HFSE) concentrations and light rare earth element (LREE) contents. Other serpentinites and lizardite mineral separates are enriched in LREE, lacking a correlation with HFSE due to interaction with high-temperature, black-smoker type fluids. The enrichment of serpentinites and lizardite separates in trace elements, as well as locally developed negative Ce-anomalies, indicate that interaction with low-T ambient seawater is another important process in the Logatchev hydrothermal system. Hence, mixing of high-T hydrothermal fluids during serpentinization and/or re-equilibration of O-isotope signatures during subsequent low-T alteration is required to explain the trace element and δ18O temperature constraints. Highly radiogenic 87Sr/86Sr signatures of serpentinite and lizardite separates provide additional evidence for interaction with seawater-derived fluids. Sparse talc alteration at the Logatchev site are most likely caused by Si-metasomatism of serpentinite associated with the emplacement of shallow gabbro intrusion(s) generating localized hydrothermal circulation. In summary the geochemistry of serpentinites from the Logatchev site document subsurface processes and the evolution of a seafloor ultramafic hydrothermal system.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-06-29
    Description: Seafloor seepage of hydrocarbon-bearing fluids has been identified in a number of marine forearcs. However, temporal variations in seep activity and the structural and tectonic parameters that control the seepage often remain poorly constrained. Subduction-zone earthquakes for example, are often discussed to trigger seafloor seepage but causal links that go beyond theoretical considerations have not yet been fully established. This is mainly due to the inaccessibility of offshore epicentral areas, the infrequent occurrence of large earthquakes, and challenges associated with offshore monitoring of seepage over large areas and sufficient time periods. Here, we report visual, geochemical, geophysical, and modelling results and observations from the Concepción Methane Seep Area (offshore Central Chile) located in the rupture area of the 2010 Mw. 8.8 Maule earthquake. High methane concentrations in the oceanic water column and a shallow sub-bottom depth of sulfate penetration indicate active methane seepage. The stable carbon isotope signature of the methane and hydrocarbon composition of the released gas indicate a mixture of shallow-sourced biogenic gas and a deeper sourced thermogenic component. Pristine fissures and fractures observed at the seafloor together with seismically imaged large faults in the marine forearc may represent effective pathways for methane migration. Upper-plate fault activity with hydraulic fracturing and dilation is in line with increased normal Coulomb stress during large plate-boundary earthquakes, as exemplarily modelled for the 2010 earthquake. On a global perspective our results point out the possible role of recurring large subduction-zone earthquakes in driving hydrocarbon seepage from marine forearcs over long timescales.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: An active seafloor hydrothermal system subjects the background sediments of the Grimsey Graben (Tjörnes Fracture Zone) to alteration that produces dissolution of the primary volcaniclastic matrix and replacement/precipitation of sulfides, sulfates, oxides, oxyhydroxides, carbonates and phyllosilicates. Three types of hydrothermal alteration of the sediment are defined on the basis of the dominant hydrothermal phyllosilicate formed: smectite, kaolinite, chlorite. The most common alteration is near‐total conversion of the volcaniclastic material to smectite (95–116°C). The dominant smectite in the deepest sediments sampled is beidellite, which is replaced by montmorillonite and an intimate mixture of di‐ and tri‐octahedral smectite up core. This gradual vertical change in smectite composition suggests an increase in the Mg supply upward, the result of sediment alteration by the ascending hydrothermal fluids mixing with descending seawater. The vertical sequence kaolinite → kaolinite‐smectite mixed‐layer → smectite from bottom to top of a core, as well as the distinct zonation across the veins (kaolinite in the central zone → kaolinite‐smectite in the rim), suggests hydrothermal transformation of the initially formed smectite to kaolinite through kaolinite‐smectite mixed‐layer (150–160°C). The cause of this transformation might have been an evolution of the fluids toward a slightly acidic pH or a relative increase in the Al concentration. Minor amounts of chamosite fill thin veins in the deepest sections of some cores. The gradual change from background clinochlore to chamosite across the veins suggests that chamosite replaces clinochlore as Fe is made available from hydrothermal dissolution of detrital Fe‐containing minerals. The internal textures, REE distribution patterns and the mode of occurrence of another magnesian phyllosilicate, kerolite, suggest that this mineral is the primary precipitate in the hydrothermal chimneys rather than an alteration product in the sediment. Kerolite precipitated after and grew on anhydrite in the chimneys. Oxygen isotope ratios are interpreted to reflect precipitation of kerolite at temperatures of 302° to 336°C. It accumulated in the hydrothermal mounds following the collapse of the chimneys and subsequent dissolution of anhydrite, thereby forming highly permeable aquifer layers underlying the vent field. Some kerolite was redeposited in the near vent field sediments by turbidity flows. The altered sediments are depleted in Mn, Rb and Sr, and enriched in U, Mo, Pb, Ba, As, Bi, Sb, Ag, Tl and Ga, as a result of leaching and precipitation, respectively. Conservative elements (Ti, Zr, Hf, Sc, Cr, Nb and Sn) are depleted or enriched in the altered sediments because of passive (precipitation or leaching of other phases) rather than active (because of their mobility) processes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-01-31
    Description: During R/V Meteor cruise 141/1, pore fluids of near surface sediments were investigated to find indications for hydrothermal activity in the Terceira Rift (TR), a hyper‐slow spreading center in the Central North Atlantic Ocean. To date, submarine hydrothermal fluid venting in the TR has only been reported for the D. João de Castro seamount, which presently seems to be inactive. Pore fluids sampled close to a volcanic cone at 2800 m water depth show an anomalous composition with Mg, SO4, and total alkalinity (TA) concentrations significantly higher than seawater and a nearby reference core. The most straightforward way of interpreting these deviations is the dissolution of the hydrothermally formed mineral caminite (MgSO4 0.25Mg(OH)2 0.2H2O). This interpretation is corroborated by a thorough investigation of fluid isotope systems (δ26Mg, δ30Si, δ34S, δ44/42Ca, and 87Sr/86Sr). Caminite is known from mineral assemblages with anhydrite, and forms in hydrothermal recharge zones only under specific conditions such as high fluid temperatures and in altered oceanic crust, which are conditions generally met at the TR. We hypothesize that caminite was formed during hydrothermal activity and is now dissolving during the waning state of the hydrothermal system, so that caminite mineralization is shifted out of its stability zone. Ongoing fluid circulation through the basement is transporting the geochemical signal via slow advection towards the seafloor.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-08
    Description: Submarine groundwater discharge (SGD) into coastal areas is a common global phenomenon and is rapidly gaining scientific interest due to its influence on marine ecology, the coastal sedimentary environment and its potential as a future freshwater resource. We conducted an integrated study of hydroacoustic surveys combined with geochemical porewater and water column investigations at a well‐known groundwater seep site in Eckernförde Bay (Germany). We aim to better constrain the effects of shallow gas and SGD on high frequency multibeam backscatter data and to present acoustic indications for submarine groundwater discharge. Our high‐quality hydroacoustic data reveal hitherto unknown internal structures within the pockmarks in Eckernförde Bay. Using precisely positioned sediment core samples, our hydroacoustic‐geochemical approach can differentiate intra‐pockmark regimes that were formerly assigned to pockmarks of a different nature. We demonstrate that high‐frequency multibeam data, in particular the backscatter signals, can be used to detect shallow free gas in areas of enhanced groundwater advection in muddy sediments. Intriguingly, our data reveal relatively small (typically 〈15 m across) pockmarks within the much larger, previously mapped, pockmarks. The small pockmarks, which we refer to as “intra‐pockmarks”, have formed due to the localized ascent of gas and groundwater; they manifest themselves as a new type of ‘eyed’ pockmarks, revealed by their acoustic backscatter pattern. Our data suggest that, in organic‐rich muddy sediments, morphological lows combined with a strong multibeam backscatter signal can be indicative of free shallow gas and subsequent advective groundwater flow.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-01-29
    Description: Marine sediments host large amounts of methane (CH4), which is a potent greenhouse gas. Quantitative estimates for methane release from marine sediments are scarce, and a poorly constrained temporal variability leads to large uncertainties in methane emission scenarios. Here, we use 2D and 3D seismic reflection, multibeam bathymetric, geochemical and sedimentological data to (I) map and describe pockmarks in the Witch Ground Basin (central North Sea), (II) characterize associated sedimentological and fluid migration structures, and (III) analyze the related methane release. More than 1500 pockmarks of two distinct morphological classes spread over an area of 225 km2. The two classes form independently from another and are corresponding to at least two different sources of fluids. Class 1 pockmarks are large in size (〉 6 m deep, 〉 250 m long, and 〉 75 m wide), show active venting, and are located above vertical fluid conduits that hydraulically connect the seafloor with deep methane sources. Class 2 pockmarks, which comprise 99.5 % of all pockmarks, are smaller (0.9‐3.1 m deep, 26‐140 m long, and 14‐57 m wide) and are limited to the soft, fine‐grained sediments of the Witch Ground Formation and possibly sourced by compaction‐related dewatering. Buried pockmarks within the Witch Ground Formation document distinct phases of pockmark formation, likely triggered by external forces related to environmental changes after deglaciation. Thus, greenhouse gas emissions from pockmark fields cannot be based on pockmark numbers and present‐day fluxes but require an analysis of the pockmark forming processes through geological time.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: First reported in the 1960s, offshore freshened groundwater (OFG) has now been documented in most continental margins around the world. In this review we compile a database documenting OFG occurrences and analyse it to establish the general characteristics and controlling factors. We also assess methods used to map and characterise OFG, identify major knowledge gaps and propose strategies to address them. OFG has a global volume of 1 million km3; it predominantly occurs within 55 km of the coast and down to a water depth of 100 m. OFG is mainly hosted within siliciclastic aquifers on passive margins and recharged by meteoric water during Pleistocene sea‐level lowstands. Key factors influencing OFG distribution are topography‐driven flow, salinisation via haline convection, permeability contrasts, and the continuity/connectivity of permeable and confining strata. Geochemical and stable isotope measurements of pore waters from boreholes have provided insights into OFG emplacement mechanisms, while recent advances in seismic reflection, electromagnetic surveys and mathematical models have improved our understanding of OFG geometry and controls. Key knowledge gaps, such as the extent and function of OFG, and the timing of their emplacement, can be addressed by the application of isotopic age tracers, joint inversion of electromagnetic and seismic reflection data, and development of three‐dimensional hydrological models. We show that such advances, combined with site‐specific modelling, are necessary to assess the potential use of OFG as an unconventional source of water and its role in sub‐seafloor geomicrobiology.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...