ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer  (72)
  • 2000-2004  (48)
  • 1980-1984  (24)
Collection
Years
Year
  • 1
    Publication Date: 2002-10-01
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2001-10-01
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-203X
    Keywords: Key words Agrobacterium tumefaciens ; Benzylisoquinoline alkaloids ; California poppy ; Eschscholzia californica Cham. ; Genetic transformation ; Somatic embryogenesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  An efficient Agrobacterium-mediated protocol for the stable genetic transformation of Eschscholzia californica Cham. (California poppy) via somatic embryogenesis is reported. Excised cotyledons were co-cultivated with A. tumefaciens strain GV3101 carrying the pBI121 binary vector. Except for the co-cultivation medium, all formulations included 50 mg l−1 paromomycin as the selective agent and 200 mg l−1 timentin to eliminate the Agrobacterium. Four to five weeks after infection, paromomycin-resistant calli grew on 80% of explants in the presence of 2.0 mg l−1 1-naphthaleneacetic acid (NAA) and 0.1 mg l−1 6-benzylaminopurine (BAP). Calli were cultured on somatic embryogenesis induction medium containing 1.0 mg l−1 NAA and 0.5 mg l−1 BAP, and somatic embryos were visible on 30% of the paromomycin-resistant calli within 3–4 weeks. Three to four weeks after the somatic embryos were transferred to phytohormone-free plant regeneration medium, 32% converted to paromomycin-resistant plants. Detection of the neomycin phosphotransferase gene and high levels of β-glucuronidase (GUS) mRNA and enzyme activity, and the cytohistochemical localization of GUS activity in all plant tissues confirmed the integrative transformation of the regenerated plants. The normal alkaloid profile of California poppy was unaffected by the transformation process; thus, the reported protocol could serve as a valuable tool to investigate the molecular and metabolic regulation of the benzophenanthridine alkaloid pathway.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Plant cell reports 19 (2000), S. 421-426 
    ISSN: 1432-203X
    Keywords: Key words California poppy ; Eschscholzia californica ; Plant regeneration ; Somatic embryogenesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The development of a rapid protocol for high-efficiency somatic embryogenesis and plant regeneration from seed-derived embryogenic callus cultures of California poppy (Eschscholzia californica Cham.) is reported. The optimized procedure required less than 13 weeks from the initiation of seed cultures to the recovery of plantlets and involved the sequential transfer of cultures onto solid Murashige and Skoog basal medium containing three different combinations of growth regulators. All steps were performed at 25  °C. Friable primary callus was induced from seeds of E. californica cultured on medium supplemented with 1.0 mg l−1 2,4-dichlorophenoxyacetic acid. The primary callus was transferred to medium containing 1.0 mg l−1 1-naphthaleneacetic acid and 0.5 mg l−1 6-benzylaminopurine to establish embryogenic callus and promote somatic embryogenesis. Regenerated plantlets were recovered after the conversion of somatic embryos on medium containing 0.05 mg l−1 6-benzylaminopurine and showed normal development. Embryogenic callus was induced at a frequency of 85%, an average of 45 somatic embryos were produced per callus, 90% of the somatic embryos converted, and about 70% of the plantlets were recovered in soil. The growth rate of somatic embryo-derived shoots could be increased by gibberellic acid treatment, but the resulting plantlets were hyperhydritic.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Photosynthetic characteristics and transpiration of Yucca brevifolia, an evergreen tree endemic to the Mojave Desert of California and Nevada, were examined in the field and the laboratory. Yucca brevifolia was confirmed to be a C3 plant, with no CAM tendencies observed for its semi-succulent leaves. The species exhibited a maximum net CO2 uptake of 12 μmol m-2 s-1 at 22°C when grown at day/night air temperatures of 31°C/17°C (data expressed on a total area basis for these opaque leaves). The optimum temperature for CO2 uptake shifted 4.5°C per 10°C change in daytime growth temperature, so that observed leaf temperatures in the field were near optimum temperatures throughout the midday period in all but the hottest months of the year. Leaves also acclimated to low and high temperature extremes, tolerances ranging to-11°C and to 59°C, respectively, suggesting that low temperatures limit the distribution of Y. brevifolia but high temperatures do not. Light saturation of photosynthesis occurred at a relatively low PAR of about 500 μmol m-2 s-1, similar to the actual PAR within a rosette. Diurnal patterns of leaf conductance shifted from a broad midday peak in wet seasons to a reduced, narrow, early morning peak in the dry season, indicating effective stomatal control of water use. The approximately 5-month-long winter-spring growth season accounted for 80% of the yearly CO2 uptake, with a predicted annual uptake of about 22 mol m-2 y-1 and a transpiration ratio of 700.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Intraspecific competition in the C4 bunchgrass Hilaria rigida was examined on a Sonoran Desert site in southeastern California. Potential competition within monospecific stands was experimentally altered by removal of the aboveground portions of all plants within a 1.5 m radius of a monitored plant. Compared with unaltered plots, altered plots had less negative soil water potentials during periods of soil drying. Leaf blades on monitored plants of altered plots remained green longer and had greater stomatal conductances than those on monitored plants on unaltered plots. Production of new culms was twice as great on altered plots. Greater root biomass and root length were observed in altered plots, and root extension into soil areas formerly occupied by roots of neighboring plants occurred within one year after treatment. The results indicate that removal of the aboveground biomass of neighboring plants reduces the competition for limited available soil water in this desert environment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 62 (1984), S. 310-317 
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Extreme temperatures near the soil surface, which can reach 70°C at the main study site in the northwestern Sonoran Desert, markedly affect seedling survival. Computer simulations indicated that for the rather spherical barrel cactus Ferocactus acanthodes (Lem.) Britt. & Rose the maximum surface temperature decreased 8°C and the minimum temperature increased 3°C as the seedling height was increased from 1 mm up to 50 mm. Simulated changes in shortwave and longwave irradiation alone showed that shading could decrease the maximum temperature by about 5°C for the common desert agave, Agave deserti Engelm., and raise the minimum 1°C. Actual field measurements on seedlings of both species, where shading would affect local air temperatures and wind speeds in addition to irradiation, indicated that shading decreased the average maximum surface temperature by 11°C in the summer and raised the minimum temperature by 3°C in winter. Seedlings grown at day/iight air temperatures of 30°C/20°C tolerated low temperatures of about -7°C and high temperatures of about 56°C, as measured by the temperature where stain uptake by chlorenchyma cells was reduced 50%. Seedling tolerance to high temperatures increased slightly with age, and F. acanthodes was more tolerant than A. deserti. Even taking the acclimation of high temperature tolerance into account (2.7°C increase per 10°C increase in temperature), seedlings of A. deserti would not be expected to withstand the high temperatures at exposed sites, consistent with previous observations that these seedlings occur only in protected microhabitats. Based primarily on greater high temperature acclimation (4.3°C per 10°C), seedlings of F. acanthodes have a greater high temperature tolerance and can just barely survive in exposed sites. Wide ranges in photoperiod had little effect on the thermal sensitivities of either species. When drought increased the chlorenchyma osmotic pressure from about 0.5 MPa to 1.3 MPa, seedlings of both species became about 2°C less tolerant of high temperatures, which would be nonadaptive in a desert environment, and 2°C more tolerant of low temperatures, which also occurs for other species. In conclusion, seedlings of A. deserti and F. acanthodes could tolerate tissue temperatures over 60°C when acclimated to high temperatures and below -8°C when acclimated to low temperatures. However, the extreme environment adjacent to desert soil requires sheltered microhabitats to protect the plants from high temperature damage and also to protect them from low temperature damage at their upper elevational limits.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary An “environmental productivity index” based on physiological responses to three environmental variables was used to predict the net productivity of a common succulent perennial of the Sonoran Desert, Agave deserti, on a monthly basis. Productivity was also independently measured in the field from dry weight changes. The index was based on soil water availability, day/night air temperatures, and photosynthetically active radiation (PAR), which were individually varied in the laboratory and the effect on net CO2 uptake by the leaves determined. From monthly precipitation, temperature, and PAR at the field site together with the responses measured in the laboratory, an index (maximum value of unity) was assigned to each of these three environmental variables and their product was termed the environmental productivity index. This index indicates the fraction of maximal CO2 uptake expected in the field for each month (well-watered A. deserti assimilated 285 mmol CO2 m-2 leaf area day-1 at PAR saturation and optimal day/night temperatures of 25° C/15° C). The dry weight analysis was based on the monthly unfolding of new leaves from the central spike of the rosette and their seasonal increase in dry weight, which were determined in the field. The production of new leaves was highly correlated with the environmental productivity index (r2=0.93), which in turn was highly correlated with the water status index (r2=0.97). After correction for respiration by folded leaves, stem, and roots, plant productivity predicted by the average environmental productivity index (0.36) over a wet June-to-October period agreed within 4% with the productivity based on the conventional dry weight analysis. The net productivity of A. deserti over this 5-month period was 0.57 kg m-2 ground area (5.7 Mg ha-1), a large value for a desert CAM plant. The environmental productivity index proposed here may provide a reliable means for predicting net productivity on a monthly basis, which may be particularly useful for species in relatively variable environments such as deserts.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Geo-marine letters 20 (2000), S. 64-71 
    ISSN: 1432-1157
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The Korea (Tsushima) Strait is an important seaway through which the warm Tsushima Current flows into the East Sea (Japan Sea). A paleogeographic map constrained by a regional sea-level curve developed on the basis of a number of recent 14C radiocarbon dates suggests that the Korea Strait was not closed during the last glacial period. Rather, it was open as a channel-like seaway linking the western North Pacific and the East Sea. Some fraction of the paleo-Tsushima Current inflow presumably continued at that time through the Korea Strait. The activity of the paleo-Tsushima Current is evidenced by the distribution pattern of river-derived lowstand deposits, consisting of a beach/shoreface complex and lowstand deltaic wedges.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Geo-marine letters 20 (2000), S. 20-26 
    ISSN: 1432-1157
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Variations in the calcite compensation depth (CCD) in the East Sea (Sea of Japan) since the early middle Miocene were inferred from data on age-depth relationships, sediment carbonate, and benthic foraminifers from ODP sites 794, 795, and 797. The CCD remained relatively shallow during much of the middle Miocene–Pliocene, and deepened sharply at the beginning of the Pleistocene. Since then it has fluctuated rapidly, possibly in relation to the onset of the northern hemisphere glacial cycles in the late Pliocene. The average CCD has deepened since at least the early middle Miocene, coinciding with the long-term drop in eustatic sea level.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...