ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1992-07-31
    Description: The Wilms tumor suppressor gene wt1 encodes a zinc finger DNA binding protein, WT1, that functions as a transcriptional repressor. The fetal mitogen insulin-like growth factor II (IGF-II) is overexpressed in Wilms tumors and may have autocrine effects in tumor progression. The major fetal IGF-II promoter was defined in transient transfection assays as a region spanning from nucleotides -295 to +135, relative to the transcription start site. WT1 bound to multiple sites in this region and functioned as a potent repressor of IGF-II transcription in vivo. Maximal repression was dependent on the presence of WT1 binding sites on each side of the transcriptional initiation site. These findings provide a molecular basis for overexpression of IGF-II in Wilms tumors and suggest that WT1 negatively regulates blastemal cell proliferation by limiting the production of a fetal growth factor in the developing vertebrate kidney.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Drummond, I A -- Madden, S L -- Rohwer-Nutter, P -- Bell, G I -- Sukhatme, V P -- Rauscher, F J 3rd -- CA 10817/CA/NCI NIH HHS/ -- CA 47983/CA/NCI NIH HHS/ -- CA 52009/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1992 Jul 31;257(5070):674-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of Chicago, IL 60637.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1323141" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Blotting, Northern ; DNA/chemistry/metabolism ; DNA-Binding Proteins/*metabolism ; Deoxyribonuclease I/metabolism ; *Gene Expression Regulation, Neoplastic ; Genes, Wilms Tumor/*physiology ; Humans ; Insulin-Like Growth Factor II/*genetics ; Kidney/embryology/metabolism ; Mice ; Molecular Sequence Data ; Promoter Regions, Genetic ; Rats ; Sequence Homology, Nucleic Acid ; Transfection ; WT1 Proteins ; Wilms Tumor/genetics/metabolism ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1991-12-20
    Description: Transient activation of the interleukin-2 (IL-2) gene after antigen recognition by T lymphocytes is crucial for subsequent T cell proliferation and differentiation. Several IL-2 gene regulatory elements and binding factors necessary for activation of the IL-2 gene have been defined. However, little is known about negative regulation of IL-2 expression, which is likely to be important in the rapid shut-off of IL-2 transcription. A nucleotide sequence element (NRE-A) that negatively regulates IL-2 expression has been identified within the IL-2 gene. T cell nuclear extracts contained an NRE-A binding activity. A complementary DNA was isolated that encodes a zinc finger-containing protein that suppressed IL-2 gene expression. The observation of negative regulation of the immunoglobulin heavy chain gene enhancer by an element similar to NRE-A suggests that related proteins may regulate multiple immune response genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Williams, T M -- Moolten, D -- Burlein, J -- Romano, J -- Bhaerman, R -- Godillot, A -- Mellon, M -- Rauscher, F J 3rd -- Kant, J A -- AI23879/AI/NIAID NIH HHS/ -- CA23413/CA/NCI NIH HHS/ -- CA54428/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1991 Dec 20;254(5039):1791-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, School of Medicine, University of New Mexico, Albuquerque 87131.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1840704" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; DNA Probes ; *Enhancer Elements, Genetic ; *Gene Expression Regulation ; *Genes, Immunoglobulin ; Humans ; Immunoglobulin Heavy Chains/*genetics ; Interleukin-2/*genetics ; Mice ; Molecular Sequence Data ; Oligodeoxyribonucleotides ; Regulatory Sequences, Nucleic Acid ; Restriction Mapping ; T-Lymphocytes/*immunology ; *Transcription, Genetic ; Zinc Fingers/*genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1990-11-30
    Description: The Wilms' tumor locus (WTL) at 11p13 contains a gene that encodes a zinc finger-containing protein that has characteristics of a DNA-binding protein. However, binding of this protein to DNA in a sequence-specific manner has not been demonstrated. A synthetic gene was constructed that contained the zinc finger region, and the protein was expressed in Escherichia coli. The recombinant protein was used to identify a specific DNA binding site from a pool of degenerate oligonucleotides. The binding sites obtained were similar to the sequence recognized by the early growth response-1 (EGR-1) gene product, a zinc finger-containing protein that is induced by mitogenic stimuli. A mutation in the zinc finger region of the protein originally identified in a Wilms' tumor patient abolished its DNA-binding activity. These results suggest that the WTL protein may act at the DNA binding site of a growth factor-inducible gene and that loss of DNA-binding activity contributes to the tumorigenic process.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rauscher, F J 3rd -- Morris, J F -- Tournay, O E -- Cook, D M -- Curran, T -- CA0917-15/CA/NCI NIH HHS/ -- CA10817/CA/NCI NIH HHS/ -- CA23413/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1990 Nov 30;250(4985):1259-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wistar Institute, Philadelphia, PA 19104.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2244209" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites ; Binding, Competitive ; Chromosomes, Human, Pair 11 ; Consensus Sequence ; DNA/genetics/*metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Early Growth Response Protein 1 ; Escherichia coli/genetics ; *Genes, Wilms Tumor ; Humans ; *Immediate-Early Proteins ; Molecular Sequence Data ; Mutation ; Oligonucleotides/metabolism ; Polymerase Chain Reaction ; Recombinant Proteins/metabolism ; Restriction Mapping ; Transcription Factors/genetics/*metabolism ; *Zinc Fingers/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-09-07
    Description: The proto-oncogenes c-fos and c-jun function cooperatively as inducible transcription factors in signal transduction processes. Their protein products, Fos and Jun, form a heterodimeric complex that interacts with the DNA regulatory element known as the activator protein-1 (AP-1) binding site. Dimerization occurs via interaction between leucine zipper domains and serves to bring into proper juxtaposition a region in each protein that is rich in basic amino acids and that forms a DNA-binding domain. DNA binding of the Fos-Jun heterodimer was modulated by reduction-oxidation (redox) of a single conserved cysteine residue in the DNA-binding domains of the two proteins. Furthermore, a nuclear protein was identified that reduced Fos and Jun and stimulated DNA-binding activity in vitro. These results suggest that transcriptional activity mediated by AP-1 binding factors may be regulated by a redox mechanism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abate, C -- Patel, L -- Rauscher, F J 3rd -- Curran, T -- New York, N.Y. -- Science. 1990 Sep 7;249(4973):1157-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Oncology and Virology, Roche Institute of Molecular Biology, Nutley, NJ 07110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2118682" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell-Free System ; Cysteine/physiology ; DNA Mutational Analysis ; DNA-Binding Proteins/drug effects/*physiology ; Diamide/pharmacology ; Humans ; In Vitro Techniques ; Molecular Sequence Data ; Oxidation-Reduction ; Proto-Oncogene Proteins/*physiology ; Proto-Oncogene Proteins c-fos ; Proto-Oncogene Proteins c-jun ; Rats ; Recombinant Proteins ; Signal Transduction ; Structure-Activity Relationship ; Sulfhydryl Reagents/pharmacology ; Transcription Factors/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1991-10-07
    Description: The wt1 gene, a putative tumor suppressor gene located at the Wilms tumor (WT) locus on chromosome 11p13, encodes a zinc finger-containing protein that binds to the same DNA sequence as EGR-1, a mitogen-inducible immediate-early gene product that activates transcription. The transcriptional regulatory potential of WT1 has not been demonstrated. In transient transfection assays, the WT1 protein functioned as a repressor of transcription when bound to the EGR-1 site. The repression function was mapped to the glutamine- and proline-rich NH2-terminus of WT1; fusion of this domain to the zinc finger region of EGR-1 converted EGR-1 into a transcriptional repressor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Madden, S L -- Cook, D M -- Morris, J F -- Gashler, A -- Sukhatme, V P -- Rauscher, F J 3rd -- CA-0917-15/CA/NCI NIH HHS/ -- CA-23413/CA/NCI NIH HHS/ -- CA-52009/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1991 Sep 27;253(5027):1550-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wistar Institute of Anatomy and Biology, Philadelphia, PA 19104.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1654597" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cell Line ; Chromosomes, Human, Pair 11 ; DNA/genetics ; DNA-Binding Proteins/*genetics ; Gene Expression Regulation ; *Genes, Tumor Suppressor ; Humans ; Kidney Neoplasms/*genetics ; Molecular Sequence Data ; Repressor Proteins/*genetics ; *Transcription, Genetic ; Wilms Tumor/*genetics ; Zinc Fingers/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...