ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1432
    Keywords: Key words: DNA repeats — DNA restriction fragment analysis — Taxonprint — Molecular systematics — Lacertidae — Primates
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. A specially optimized restriction analysis of highly repetitive DNA elements, called DNA taxonprint, was applied for phylogenetic study of primates and lizards. It was shown that electrophoretic bands of DNA repeats revealed by the taxonprint technique have valuable properties for molecular systematics. Approximately half of taxonprint bands (TB) are invariable and do not disappear from the genomes during evolution or change spontaneously. Presumably these invariable bands are restriction fragments of dispersed DNA repeats. Another group represents variable taxonprint bands that differ even between closely related species. These variable bands are probably represented by tandem DNA repeats and could be used as species-specific markers. It was shown that taxonprint bands are independent characters since the appearance of a new taxonprint band does not change the previous band pattern. Phylogenetic reconstruction carried out on taxonprint data demonstrated that this approach could be of general utility for molecular systematics and species identification.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 46 (1998), S. 263-271 
    ISSN: 1432-1432
    Keywords: Key words: Human genes — Exon/intron gene structure — Intron phase order — Exon shuffling — Gene evolution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. Nonrandomness in the intron and exon phase distributions in a sample of 305 human genes has been found and analyzed. It was shown that exon duplications had a significant effect on the exon phase nonrandomness. All of the nonrandomness is probably due to both the processes of exon duplication and shuffling. A quantitative estimation of exon duplications in the human genome and their influence on the intron and exon phase distributions has been analyzed. According to our estimation, the proportion of duplicated exons in the human genome constitutes at least 6% of the total. Generalizing the particular case of exon duplication to the more common event of exon shuffling, we modeled and analyzed the influence of exon shuffling on intron phase distribution.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...