ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1998-10-23
    Description: Analysis of the 1,042,519-base pair Chlamydia trachomatis genome revealed unexpected features related to the complex biology of chlamydiae. Although chlamydiae lack many biosynthetic capabilities, they retain functions for performing key steps and interconversions of metabolites obtained from their mammalian host cells. Numerous potential virulence-associated proteins also were characterized. Several eukaryotic chromatin-associated domain proteins were identified, suggesting a eukaryotic-like mechanism for chlamydial nucleoid condensation and decondensation. The phylogenetic mosaic of chlamydial genes, including a large number of genes with phylogenetic origins from eukaryotes, implies a complex evolution for adaptation to obligate intracellular parasitism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stephens, R S -- Kalman, S -- Lammel, C -- Fan, J -- Marathe, R -- Aravind, L -- Mitchell, W -- Olinger, L -- Tatusov, R L -- Zhao, Q -- Koonin, E V -- Davis, R W -- AI 39258/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1998 Oct 23;282(5389):754-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Infectious Diseases, University of California, Berkeley, CA 94720, USA. ctgenome@socrates.berkeley.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9784136" target="_blank"〉PubMed〈/a〉
    Keywords: Aerobiosis ; Amino Acid Sequence ; Amino Acids/biosynthesis ; Bacterial Outer Membrane Proteins/genetics ; Bacterial Proteins/chemistry/genetics ; Biological Evolution ; Chlamydia trachomatis/classification/*genetics/metabolism/physiology ; DNA Repair ; Energy Metabolism ; Enzymes/chemistry/genetics ; *Genome, Bacterial ; Humans ; Lipids/biosynthesis ; Molecular Sequence Data ; Peptidoglycan/biosynthesis/genetics ; Phylogeny ; Protein Biosynthesis ; Recombination, Genetic ; *Sequence Analysis, DNA ; Transcription, Genetic ; Transformation, Bacterial ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-04-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, D L -- Garry, R F -- New York, N.Y. -- Science. 1999 Mar 12;283(5408):1644.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10189316" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breast Implants/*adverse effects ; Female ; Humans ; Silicone Gels/*adverse effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1997-12-31
    Description: The nuclear factor of activated T cells (NFAT) group of transcription factors is retained in the cytoplasm of quiescent cells. NFAT activation is mediated in part by induced nuclear import. This process requires calcium-dependent dephosphorylation of NFAT caused by the phosphatase calcineurin. The c-Jun amino-terminal kinase (JNK) phosphorylates NFAT4 on two sites. Mutational removal of the JNK phosphorylation sites caused constitutive nuclear localization of NFAT4. In contrast, JNK activation in calcineurin-stimulated cells caused nuclear exclusion of NFAT4. These findings show that the nuclear accumulation of NFAT4 promoted by calcineurin is opposed by the JNK signal transduction pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chow, C W -- Rincon, M -- Cavanagh, J -- Dickens, M -- Davis, R J -- CA58396/CA/NCI NIH HHS/ -- CA65831/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1997 Nov 28;278(5343):1638-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9374467" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; COS Cells ; Calcineurin/metabolism ; Calcineurin Inhibitors ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Cell Line ; Cell Nucleus/*metabolism ; Cyclosporine/pharmacology ; Cytoplasm/metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Humans ; JNK Mitogen-Activated Protein Kinases ; Jurkat Cells ; Mitogen-Activated Protein Kinase Kinases ; *Mitogen-Activated Protein Kinases ; Mutation ; NFATC Transcription Factors ; *Nuclear Proteins ; Phosphorylation ; Protein Kinases/metabolism ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; T-Lymphocytes/metabolism ; Transcription Factors/genetics/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1997-07-04
    Description: Angiogenesis is thought to depend on a precise balance of positive and negative regulation. Angiopoietin-1 (Ang1) is an angiogenic factor that signals through the endothelial cell-specific Tie2 receptor tyrosine kinase. Like vascular endothelial growth factor, Ang1 is essential for normal vascular development in the mouse. An Ang1 relative, termed angiopoietin-2 (Ang2), was identified by homology screening and shown to be a naturally occurring antagonist for Ang1 and Tie2. Transgenic overexpression of Ang2 disrupts blood vessel formation in the mouse embryo. In adult mice and humans, Ang2 is expressed only at sites of vascular remodeling. Natural antagonists for vertebrate receptor tyrosine kinases are atypical; thus, the discovery of a negative regulator acting on Tie2 emphasizes the need for exquisite regulation of this angiogenic receptor system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maisonpierre, P C -- Suri, C -- Jones, P F -- Bartunkova, S -- Wiegand, S J -- Radziejewski, C -- Compton, D -- McClain, J -- Aldrich, T H -- Papadopoulos, N -- Daly, T J -- Davis, S -- Sato, T N -- Yancopoulos, G D -- New York, N.Y. -- Science. 1997 Jul 4;277(5322):55-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9204896" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Angiopoietin-1 ; Angiopoietin-2 ; Animals ; Blood Vessels/embryology/*metabolism ; Cells, Cultured ; Cloning, Molecular ; Embryo, Mammalian/metabolism ; Endothelial Growth Factors/genetics/metabolism ; Endothelium, Vascular/*cytology/metabolism ; Female ; Humans ; Ligands ; Lymphokines/genetics/metabolism ; Membrane Glycoproteins/antagonists & inhibitors/metabolism ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; *Neovascularization, Physiologic ; Phosphorylation ; Proteins/chemistry/*metabolism ; Rats ; Rats, Sprague-Dawley ; Receptor Protein-Tyrosine Kinases/*antagonists & inhibitors/metabolism ; Receptor, TIE-2 ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Vascular Endothelial Growth Factor A ; Vascular Endothelial Growth Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1997-06-13
    Description: Two families of small peptides that bind to the human thrombopoietin receptor and compete with the binding of the natural ligand thrombopoietin (TPO) were identified from recombinant peptide libraries. The sequences of these peptides were not found in the primary sequence of TPO. Screening libraries of variants of one of these families under affinity-selective conditions yielded a 14-amino acid peptide (Ile-Glu-Gly-Pro-Thr-Leu-Arg-Gln-Trp-Leu-Ala-Ala-Arg-Ala) with high affinity (dissociation constant approximately 2 nanomolar) that stimulates the proliferation of a TPO-responsive Ba/F3 cell line with a median effective concentration (EC50) of 400 nanomolar. Dimerization of this peptide by a carboxyl-terminal linkage to a lysine branch produced a compound with an EC50 of 100 picomolar, which was equipotent to the 332-amino acid natural cytokine in cell-based assays. The peptide dimer also stimulated the in vitro proliferation and maturation of megakaryocytes from human bone marrow cells and promoted an increase in platelet count when administered to normal mice.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cwirla, S E -- Balasubramanian, P -- Duffin, D J -- Wagstrom, C R -- Gates, C M -- Singer, S C -- Davis, A M -- Tansik, R L -- Mattheakis, L C -- Boytos, C M -- Schatz, P J -- Baccanari, D P -- Wrighton, N C -- Barrett, R W -- Dower, W J -- New York, N.Y. -- Science. 1997 Jun 13;276(5319):1696-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Affymax Research Institute, 4001 Miranda Avenue, Palo Alto, CA 94304, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9180079" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding, Competitive ; Blood Platelets/cytology ; Cell Division ; Cell Line ; Cells, Cultured ; Consensus Sequence ; Dimerization ; Erythropoietin/pharmacology ; Hematopoiesis/drug effects ; Humans ; Megakaryocytes/cytology ; Mice ; Molecular Sequence Data ; *Neoplasm Proteins ; Oligopeptides/*metabolism/*pharmacology ; Peptide Library ; Peptides/metabolism/pharmacology ; Platelet Count ; Proto-Oncogene Proteins/*agonists/metabolism ; *Receptors, Cytokine ; Receptors, Thrombopoietin ; Recombinant Proteins/metabolism/pharmacology ; Thrombopoietin/*metabolism/pharmacology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-01-31
    Description: Unilateral brain damage frequently produces "extinction," in which patients can detect brief single visual stimuli on either side but are unaware of a contralesional stimulus if presented concurrently with an ipsilesional stimulus. Explanations for extinction have invoked deficits in initial processes that operate before the focusing of visual attention or in later attentive stages of vision. Preattentive vision was preserved in a parietally damaged patient, whose extinction was less severe when bilateral stimuli formed a common surface, even if this required visual filling-in to yield illusory Kanizsa figures or completion of partially occluded figures. These results show that parietal extinction arises only after substantial processing has generated visual surfaces, supporting recent claims that visual attention is surface-based.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mattingley, J B -- Davis, G -- Driver, J -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 1997 Jan 31;275(5300):671-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9005854" target="_blank"〉PubMed〈/a〉
    Keywords: Aged ; *Attention ; Cerebrovascular Disorders/*physiopathology ; *Extinction, Psychological ; Female ; *Form Perception ; Humans ; Parietal Lobe/*physiopathology ; Psychomotor Performance ; Visual Pathways
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1997-06-13
    Description: The gene responsible for Friedreich's ataxia, a disease characterized by neurodegeneration and cardiomyopathy, has recently been cloned and its product designated frataxin. A gene in Saccharomyces cerevisiae was characterized whose predicted protein product has high sequence similarity to the human frataxin protein. The yeast gene (yeast frataxin homolog, YFH1) encodes a mitochondrial protein involved in iron homeostasis and respiratory function. Human frataxin also was shown to be a mitochondrial protein. Characterizing the mechanism by which YFH1 regulates iron homeostasis in yeast may help to define the pathologic process leading to cell damage in Friedreich's ataxia.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Babcock, M -- de Silva, D -- Oaks, R -- Davis-Kaplan, S -- Jiralerspong, S -- Montermini, L -- Pandolfo, M -- Kaplan, J -- DK30534/DK/NIDDK NIH HHS/ -- DK49219/DK/NIDDK NIH HHS/ -- NS34192/NS/NINDS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1997 Jun 13;276(5319):1709-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT 84132, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9180083" target="_blank"〉PubMed〈/a〉
    Keywords: Biological Transport ; Carrier Proteins/metabolism ; Cell Membrane/metabolism ; *Ceruloplasmin ; Cytosol/metabolism ; Friedreich Ataxia/metabolism ; Fungal Proteins/genetics/*metabolism ; Genes, Fungal ; Genetic Complementation Test ; Homeostasis ; Humans ; Iron/*metabolism ; *Iron-Binding Proteins ; Membrane Transport Proteins/metabolism ; Mitochondria/*metabolism ; Oxidative Stress ; Oxidoreductases/metabolism ; Phosphotransferases (Alcohol Group Acceptor)/metabolism ; Recombinant Fusion Proteins/metabolism ; Saccharomyces cerevisiae/genetics/growth & development/*metabolism ; *Saccharomyces cerevisiae Proteins ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1996-06-21
    Description: ZPR1 is a zinc finger protein that binds to the cytoplasmic tyrosine kinase domain of the epidermal growth factor receptor (EGFR). Deletion analysis demonstrated that this binding interaction is mediated by the zinc fingers of ZPR1 and subdomains X and XI of the EGFR tyrosine kinase. Treatment of mammalian cells with EGF caused decreased binding of ZPR1 to the EGFR and the accumulation of ZPR1 in the nucleus. The effect of EGF to regulate ZPR1 binding is dependent on tyrosine phosphorylation of the EGFR. ZPR1 therefore represents a prototype for a class of molecule that binds to the EGFR and is released from the receptor after activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Galcheva-Gargova, Z -- Konstantinov, K N -- Wu, I H -- Klier, F G -- Barrett, T -- Davis, R J -- R01-CA58396/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1996 Jun 21;272(5269):1797-802.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8650580" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Carrier Proteins/chemistry/*metabolism/secretion ; Cell Line ; Cell Nucleus/metabolism ; Cloning, Molecular ; Cytoplasm/metabolism ; Epidermal Growth Factor/pharmacology ; Humans ; Immunoblotting ; Male ; Mice ; Molecular Sequence Data ; Phosphorylation ; Phosphotyrosine/metabolism ; Protein Structure, Secondary ; RNA, Messenger/genetics/metabolism ; Receptor, Epidermal Growth Factor/chemistry/*metabolism ; Testis/metabolism ; Type C Phospholipases/metabolism ; Vanadates/pharmacology ; *Zinc Fingers ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1995-02-03
    Description: Mammalian mitogen-activated protein (MAP) kinases include extracellular signal-regulated protein kinase (ERK), c-Jun amino-terminal kinase (JNK), and p38 subgroups. These MAP kinase isoforms are activated by dual phosphorylation on threonine and tyrosine. Two human MAP kinase kinases (MKK3 and MKK4) were cloned that phosphorylate and activate p38 MAP kinase. These MKK isoforms did not activate the ERK subgroup of MAP kinases, but MKK4 did activate JNK. These data demonstrate that the activators of p38 (MKK3 and MKK4), JNK (MKK4), and ERK (MEK1 and MEK2) define independent MAP kinase signal transduction pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Derijard, B -- Raingeaud, J -- Barrett, T -- Wu, I H -- Han, J -- Ulevitch, R J -- Davis, R J -- AI15136/AI/NIAID NIH HHS/ -- CA58396/CA/NCI NIH HHS/ -- GM37696/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1995 Feb 3;267(5198):682-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester 01605.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7839144" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Cell Line ; Cloning, Molecular ; Enzyme Activation ; Humans ; JNK Mitogen-Activated Protein Kinases ; MAP Kinase Kinase 3 ; *MAP Kinase Kinase 4 ; Mitogen-Activated Protein Kinase 1 ; *Mitogen-Activated Protein Kinase Kinases ; *Mitogen-Activated Protein Kinases ; Molecular Sequence Data ; Phosphorylation ; Protein-Serine-Threonine Kinases/chemistry/*metabolism ; Protein-Tyrosine Kinases/chemistry/*metabolism ; *Signal Transduction ; Substrate Specificity ; Transfection ; p38 Mitogen-Activated Protein Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1995-10-20
    Description: A high-capacity system was developed to monitor the expression of many genes in parallel. Microarrays prepared by high-speed robotic printing of complementary DNAs on glass were used for quantitative expression measurements of the corresponding genes. Because of the small format and high density of the arrays, hybridization volumes of 2 microliters could be used that enabled detection of rare transcripts in probe mixtures derived from 2 micrograms of total cellular messenger RNA. Differential expression measurements of 45 Arabidopsis genes were made by means of simultaneous, two-color fluorescence hybridization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schena, M -- Shalon, D -- Davis, R W -- Brown, P O -- R21HG00450/HG/NHGRI NIH HHS/ -- R37AG00198/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 1995 Oct 20;270(5235):467-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Beckman Center, Stanford University Medical Center, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7569999" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*genetics ; *Arabidopsis Proteins ; DNA, Complementary/*genetics ; DNA, Plant/genetics ; DNA-Binding Proteins ; *Gene Expression ; *Genes, Plant ; *Genetic Techniques ; Genome, Human ; Homeodomain Proteins ; Humans ; Molecular Sequence Data ; Nucleic Acid Hybridization ; Plant Leaves/genetics ; Plant Roots/genetics ; Plants, Genetically Modified ; Polymerase Chain Reaction ; RNA Probes ; RNA, Messenger/genetics ; RNA, Plant/genetics ; Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...