ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (19)
Collection
Years
Year
  • 1
    Publication Date: 2014-12-01
    Description: To assist the National Science Foundation in meeting the needs of the community of scientists by providing them with the instrumentation and platforms necessary to conduct their research successfully, a meeting was held in late November 2012 with the purpose of defining the problems of the next generation that will require radar technologies and determining the suite of radars best suited to help solve these problems. This paper summarizes the outcome of the meeting: (i) Radars currently in use in the atmospheric sciences and in related research are reviewed. (ii) New and emerging radar technologies are described. (iii) Future needs and opportunities for radar support of high-priority research are discussed. The current radar technologies considered critical to answering the key and emerging scientific questions are examined. The emerging radar technologies that will be most helpful in answering the key scientific questions are identified. Finally, gaps in existing radar observing technologies are listed.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-02-01
    Description: During the Second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2), in the spring of 2010, a mobile and pulsed Doppler lidar system [the Truck-Mounted Wind Observing Lidar Facility (TWOLF)] mounted on a truck along with a mobile, phased-array, X-band Doppler radar system [Mobile Weather Radar–2005 X-band, phased array (MWR-05XP)] was used to complement Doppler velocity coverage in clear air near the radar–lidar facility and to provide high-spatial-resolution vertical cross sections of the Doppler wind field in the clear-air boundary layer near and in supercells. It is thought that the magnitude and direction of vertical shear and possibly the orientation and spacing of rolls in the boundary layer have significant effects on both supercell and tornado behavior; MWR-05XP and TWOLF can provide data that can be used to measure vertical shear and detect rolls. However, there are very few detailed, time-dependent and spatially varying observations throughout the depth of the boundary layer of supercells and tornadoes. This paper discusses lidar and radar data collected in or near six supercells. Features seen by the lidar included gust fronts, horizontal convective rolls, and small-scale vortices. The lidar proved useful at detecting high-spatial-resolution, clear-air returns at close range, where the radar was incapable of doing so, thus providing a more complete picture of the boundary layer environment ahead of supercells. The lidar was especially useful in areas where there was ground-clutter contamination. When there was precipitation and probably insects, and beyond the range of the lidar, where there was no ground-clutter contamination, the radar was the more useful instrument. Suggestions are made for improving the system and its use in studying the tornado boundary layer.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2013-07-01
    Description: A novel, rapid-scanning, X-band (3-cm wavelength), polarimetric (RaXPol), mobile radar was developed for severe-weather research. The radar employs a 2.4-m-diameter dual-polarized parabolic dish antenna on a high-speed pedestal capable of rotating the antenna at 180° s−1. The radar can complete a 10-elevation-step volume scan in about 20 s, while maintaining a 180-record-per-second data rate. The transmitter employs a 20-kW peak-power traveling wave tube amplifier that can generate pulse compression and frequency-hopping waveforms. Frequency hopping permits the acquisition of many more independent samples possible than without frequency hopping, making it possible to scan much more rapidly than conventional radars. Standard data products include vertically and horizontally polarized equivalent radar reflectivity factor, Doppler velocity mean and standard deviation, copolar cross-correlation coefficient, and differential phase. This paper describes the radar system and illustrates the capabilities of the radar through selected analyses of data collected in the U.S. central plains during the 2011 spring tornado season. Also noted are opportunities for experimenting with different signal-processing techniques to reduce beam smearing, increase sensitivity, and improve range resolution.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-07-01
    Description: On 4 May 2007, a supercell produced an EF-5 tornado that severely damaged the town of Greensburg, Kansas. Volumetric data were collected in the “Greensburg storm” by the University of Massachusetts X-band, mobile, polarimetric Doppler radar (UMass X-Pol) for 70 min; 10 tornadoes were detected. This mobile Doppler radar dataset is one of only a few documenting an EF-5 tornado and the supercell’s transition from short-track, cyclic tornado production (mode 1) to long-track tornado production (mode 2). Using bootstrap confidence intervals, it is determined that the mode-2 tornadoes moved in the same direction as the supercell vault. In contrast, the mode-1 tornadoes moved to the left with respect to the vault. From polarimetric data collected in this storm, the authors infer the presence of large, oblate drops (high ZDR, high ρhv) in the forward flank and surrounding some of the tornadoes. The authors speculate that the weak-echo column (WEC) in the Greensburg tornado, which extended above 10 km AGL, was caused primarily by the centrifuging of hydrometeors at low levels and rapid upward transport of relatively scatterer-free air at upper levels. This WEC was collocated at low levels with a low-ZDR, low-ρhv column, indicating lofted debris. Dual-Doppler analyses, generated at ~10-min intervals using data from UMass X-Pol and the Dodge City, Kansas, Weather Surveillance Radar-1988 Doppler (WSR-88D), were used to locate updrafts and downdrafts near the hook echo. In the immediate vicinity of tornadoes, diminished ZDR values downstream of analyzed downdrafts may indicate the ingestion by tornadoes of relatively small drops, fallout of larger drops, or a combination of both.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-01
    Description: Kelvin–Helmholtz waves were observed by the Twin Lakes, Oklahoma (KTLX), Weather Surveillance Radar-1988 Doppler (WSR-88D); the Norman, Oklahoma (KOUN), polarimetric WSR-88D; and the polarimetric Collaborative Adaptive Sensing of the Atmosphere (CASA) radars on 30 November 2006 during a winter storm in central Oklahoma. The life cycle and structure of the waves are analyzed from the radar data, and the nearby atmospheric conditions are examined. The initial perturbations associated with the waves are first evident only in the radars’ radial velocity fields. As the waves mature, perturbations become discernable in the reflectivity factor Z and spectrum width (SW) fields of both radars, and in the differential reflectivity Zdr and, to a lesser extent, the cross-correlation coefficient ρhv fields of KOUN. As the waves break and begin to dissipate, the perturbations subside. A dual-Doppler analysis is synthesized to examine the kinematic structure of the waves and to relate the polarimetric observations to the kinematics. It is determined that Z and Zdr are enhanced in regions of upward motion (wave crests), and ρhv is reduced in the same vicinity and near the base of the wave circulations. Vertical velocity perturbations transport horizontal momentum upward and downward, inducing horizontal wind perturbations that are approximately 90° out of phase and downstream from their corresponding vertical velocity perturbations. Perturbations in Z, Zdr, and ρhv are observed in the vicinity of wave crests while SW perturbations occur predominately in and just upstream from wave troughs. It is determined that perturbations in the polarimetric variables are a result of the waves modifying local precipitation microphysics. Perturbations in Z and Zdr are hypothesized to be the result of columnar ice crystal generation whereas those in ρhv likely result from the mixing of ice crystals of various shapes and sizes. Perturbations in SW are a result of turbulent motions likely associated with wave breaking and downward advection of a strong shear layer.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-07-22
    Description: The increasing number of mobile Doppler radars used in field campaigns across the central United States has led to an increasing number of high-resolution radar datasets of strong tornadoes. There are more than a few instances in which the radar-measured radial velocities substantially exceed the estimated wind speeds associated with the enhanced Fujita (EF) scale rating assigned to a particular tornado. It is imperative, however, to understand what the radar data represent if one wants to compare radar observations to damage-based EF-scale estimates. A violent tornado observed by the rapid-scan, X-band, polarimetric mobile radar (RaXPol) on 31 May 2013 contained radar-relative radial velocities exceeding 135 m s−1 in rural areas essentially devoid of structures from which damage ratings can be made. This case, along with others, serves as an excellent example of some of the complications that arise when comparing radar-estimated velocities with the criteria established in the EF scale. In addition, it is shown that data from polarimetric radars should reduce the variance of radar-relative radial velocity estimates within the debris field compared to data from single-polarization radars. Polarimetric radars can also be used to retrieve differential velocity, large magnitudes of which are spatially associated with large spectrum widths inside the polarimetric tornado debris signature in several datasets of intense tornadoes sampled by RaXPol.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-12-01
    Description: On 2 April 2010, a developing quasi-linear convective system (QLCS) moved rapidly northeastward through central Oklahoma spawning at least three intense, mesoscale vortices. At least two of these vortices caused damage rated as category 0 to 1 on the enhanced Fujita scale (EF0–EF1) in and near the town of Rush Springs. Two radar networks—the National Weather Service Weather Surveillance Radar-1988 Doppler network (WSR-88D) and the Engineering Research Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) radar network—collected high spatial and temporal resolution data of the event. This study is an in-depth polarimetric analysis of mesovortices within a QLCS. In this case study, the storm development and evolution of the QLCS mesovortices are examined. Significant findings include the following: 1) The damage in Rush Springs was caused by a combination of the fast translation speed and the embedded circulations associated with QLCS vortices. The vortices’ relative winds nearly negated the storm motion to the left of the vortex, but doubled the ground-relative wind to the right of the vortex. 2) A significant differential reflectivity (ZDR) arc developed along the forward flank of the first vortex. The ZDR arc propagated northeastward along the QLCS with the development of each new vortex. 3) A minimum in the copolar correlation coefficient (ρhv) in the center of the strongest vortex was observed, indicating the likely existence of a polarimetric tornado debris signature (TDS). A secondary ρhv minimum also was found just to the right of the vortex center, possibly associated with lofted debris from straight-line winds.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-02-01
    Description: Adding a mix of X- or C-band radars to the current Weather Surveillance Radar-1988 Doppler (WSR-88D) network could address several limitations of the network, including improvements to spatial gaps in low-level coverage and temporal sampling of volume scans. These limitations can result in missing critical information in highly dynamic events, such as tornadoes and severe straight-line wind episodes. To evaluate the potential value of a mixed-band radar network for severe weather operations, a case study is examined using data from X- and S-band radars. On 13 May 2009, a thunderstorm complex associated with a cold front moved southward into southwest Oklahoma. A tornado rapidly developed from an embedded supercell within the complex. The life cycle of the tornado and subsequent wind event was sampled by the experimental Collaborative Adaptive Sensing of the Atmosphere (CASA) radar testbed of four X-band radars as well as two operational WSR-88Ds. In this study, the advantages of a mixed-band radar network are demonstrated through a chronological analysis of the event. The two radar networks provided enhanced overall situational awareness. Data from the WSR-88Ds provided 1) clear-air sensitivity, 2) a broad overview of the storm complex, 3) a large maximum unambiguous range, and 4) upper-level scans up to 19.5°. Data from the CASA radars provided 1) high-temporal, 1-min updates; 2) overlapping coverage for dual-Doppler analysis; and 3) dense low-level coverage. The combined system allowed for detailed, dual- and single-Doppler observations of a wind surge, a mesocyclone contraction, and a downburst.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-02-01
    Description: Mobile Doppler radar data, along with observations from a nearby Weather Surveillance Radar-1988 Doppler (WSR-88D), are assimilated with an ensemble Kalman filter (EnKF) technique into a nonhydrostatic, compressible numerical weather prediction model to analyze the evolution of the 4 May 2007 Greensburg, Kansas, tornadic supercell. The storm is simulated via assimilation of reflectivity and velocity data in an initially horizontally homogeneous environment whose parameters are believed to be a close approximation to those of the Greensburg supercell inflow sector. Experiments are conducted to test analysis sensitivity to mobile radar data availability and to the mean environmental near-surface wind profile, which was changing rapidly during the simulation period. In all experiments, a supercell with similar location and evolution to the observed storm is analyzed, but the simulated storm’s characteristics differ markedly. The assimilation of mobile Doppler radar data has a much greater impact on the resulting analyses, particularly at low altitudes (≤2 km), than modifications to the near-surface environmental wind profile. Differences in the analyzed updrafts, vortices, cold pool structure, rear-flank gust front structure, and observation-space diagnostics are documented. An analyzed vortex corresponding to the enhanced Fujita scale 5 (EF-5) Greensburg tornado is stronger and deeper in experiments in which mobile (higher resolution) Doppler radar data are included in the assimilation. This difference is linked to stronger analyzed horizontal convergence, which in turn is associated with increased stretching of vertical vorticity. Changing the near-surface wind profile appears to impact primarily the updraft strength, availability of streamwise vorticity for tilting into the vertical, and low-level vortex strength and longevity.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...