ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (1,513)
Collection
Keywords
Language
Years
Year
  • 1
    Call number: IASS 18.91352
    Type of Medium: Monograph available for loan
    Pages: XXIII, 2323 Seiten , 20 cm
    Edition: 5. Auflage
    ISBN: 3406676960 , 9783406676963
    Parallel Title: Online-Ausg. Dreier, Thomas: Urheberrechtsgesetz
    Language: German
    Branch Library: RIFS Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Call number: 9783662562338 (e-book)
    Description / Table of Contents: This completely updated and revised second edition provides a unique and up-to-date treatment of all aspects of plant ecology, making it an ideal textbook and reference work for students, researchers and practitioners. More than 500 high-quality images and drawings, mostly in colour, aid readers’ understanding of various key topics, while the clear structure and straightforward style make it user friendly and particularly useful for students. Written by leading experts, it offers authoritative information, including relevant references. While Plant Ecology primarily addresses graduate students in biology and ecology, it is also a valuable resource for post-graduate students and researchers in botany, environmental sciences and landscape ecology, as well as all those whose study or work touches on agriculture, forestry, land use, and landscape management. Key Topics: - Molecular ecophysiology (molecular stress physiology: light, temperature, oxygen deficiency, water deficit (drought), unfavorable soil mineral conditions, biotic stress) - Physiological and biophysical plant ecology (ecophysiology of plants: thermal balance, water, nutrient, carbon relations) - Ecosystem ecology (characteristics of ecosystems, approaches how to study and how to model terrestrial ecosystems, biogeochemical fluxes in terrestrial ecosystems) - Community ecology and biological diversity (development of plant communities in time and space, interactions between plants and plant communities with the abiotic and the biotic environment, biodiversity and ecosystem functioning) - Global ecology (global biogeochemical cycles, Dynamic Global Vegetation Models, global change and terrestrial ecosystems)
    Type of Medium: 12
    Pages: 1 Online-Ressource (XXI, 926 Seiten) , Illustrationen, Diagramme, Karten
    Edition: Second edition
    ISBN: 9783662562338 , 978-3-662-56233-8
    Language: English
    Note: Contents 1 Introduction References Part I Molecular Stress Physiology 2 General Themes of Molecular Stress Physiology 2.1 Definitions and Concepts 2.1.1 Stress 2.1.2 Quantification of Stress 2.1.3 Escape–Resistance–Avoidance–Tolerance 2.1.4 Stress Responses–Acclimation–Adaptation 2.1.5 Filters Determining Species Distribution 2.2 Activation of Stress Tolerance and Avoidance Mechanisms 2.2.1 Stress Sensing and Signal Transduction 2.2.2 Transcriptional Control 2.2.3 Oxidative Stress 2.2.4 Long-Distance Stress Signalling 2.2.5 The Model System Arabidopsis thaliana 2.3 Stress and Growth Regulation 2.4 Molecular Basis of Escape and Anticipation of Stress 2.4.1 Circadian Rhythms 2.4.2 Anticipation of Seasonal Changes in Environmental Conditions 2.4.3 Developmental Switches Triggered by Favourable Conditions 2.4.4 Trans-Generational Stress Memory Summary References 3 Light 3.1 The Dual Significance of Light 3.2 Visible Light 3.2.1 Avoidance of Light Stress and Permanent or Dynamic Acclimation 3.2.2 Overexcitation and Damage to Photosynthetic Membranes. 3.2.3 Flexible Acclimation to Changes in Light Intensity 3.2.4 Continuous Light 3.2.5 Light Triggers Plant Adaptation and Acclimation to the Environment 3.3 UV-B Radiation 3.3.1 Ranges of Ultraviolet Radiation and Biological Activity 3.3.2 Ultraviolet-B Damage and Repair Mechanisms 3.3.3 Avoidance of Ultraviolet-B-Induced Stress 3.3.4 Ultraviolet-B Perception and Signalling 3.3.5 Crosstalk Between Ultraviolet-B and Visible Light Responses Summary References 4 Temperature 4.1 The Temperature Challenge 4.1.1 Temperature Dependence of Life 4.1.2 Plants as Poikilothermic Organisms 4.1.3 Variations in Temperature Range 4.1.4 Strategies to Cope with Temperature Fluctuations and Temperature Extremes 4.2 Cold Acclimation and Freezing Tolerance 4.2.1 Adjustment of Membrane Fluidity 4.2.2 Prevention of Photoinhibition 4.2.3 Cryoprotective Proteins 4.2.4 Control of Ice Formation 4.2.5 Signalling Networks Involved in Cold Acclimation 4.2.6 Freezing Avoidance and Freezing Tolerance in Tropical High Mountain Plants 4.3 Heat Stress 4.3.1 Heat Stress Avoidance 4.3.2 Acquired Thermotolerance 4.3.3 The Heat Shock Response 4.4 Temperature Sensing 4.4.1 Sensing of Extreme Temperatures 4.4.2 Sensing of Ambient Temperature Changes Summary References 5 Oxygen Deficiency 5.1 Conditions of Flooded Soil 5.2 Hypoxia-Induced Damage: Energy Metabolism of Plants Under Oxygen Deficiency 5.3 Natural Variation in the Ability to Endure Inundation by Water 5.4 Adaptations to Flooding-Prone Habitats 5.4.1 Anatomical–Morphological Adaptations and Modifications 5.4.2 Biochemical Modifications 5.5 Sensing of Flooding and Ensuing Signal Transduction 5.5.1 Ethylene Signal Transduction 5.5.2 Oxygen Sensing 5.6 Regulation of Avoidance and Tolerance Strategies Summary References 6 Water Deficiency (Drought) 6.1 The Properties of Water 6.2 Water Acquisition and Movement: Cellular Aspects 6.2.1 The Water Potential 6.2.2 Facilitation of Intercellular and Intracellular Water Flow: Aquaporins 6.3 Drought Stress Responses: Avoidance and Tolerance 6.3.1 Control of the Osmotic Potential 6.3.2 Protective Proteins 6.3.3 Regulation of the Stomatal Aperture 6.4 Acclimation of Growth 6.4.1 Inhibition of Shoot Growth 6.4.2 Stimulation of Root Growth 6.5 Sensing of Water Status and Signal Transduction 6.5.1 Sensing of Water Status 6.5.2 ABA Signal Transduction 6.5.3 ABA-Independent Signalling 6.6 Photosynthesis Variants with Improved Water Use Efficiency 6.6.1 C4 Photosynthesis 6.6.2 Evolution of C 4 Photosynthesis 6.6.3 Crassulacean Acid Metabolism 6.6.4 Evolution of Crassulacean Acid Metabolism Photosynthesis Summary References 7 Adverse Soil Mineral Availability 7.1 Mineral Nutrients 7.2 The Mineral Nutrition Challenge 7.2.1 Elements in the Soil 7.2.2 Element Toxicity 7.3 Nutrient Acquisition and Responses to Nutrient Scarcity 7.3.1 Modulation of Nutrient Availability 7.3.2 Cellular Ion Transport Mechanisms 7.3.3 Modulation of Nutrient Uptake in Response to Deficiency 7.3.4 Intracellular Transport and Cellular Aspects of Long-Distance Transport 7.3.5 Plasticity of Root Architecture and Responses to Nutrient Deficiency 7.3.6 Sensing of Nutrient Availability and Nutrient Status . 7.4 Nutrient Acquisition Symbioses 7.4.1 Mycorrhizae 7.4.2 Nitrogen Fixation 7.4.3 The Common Sym Pathway 7.5 Responses to Element Toxicity and Tolerance Mechanisms 7.5.1 Essential Metal Toxicity and Tolerance 7.5.2 Metal Hyperaccumulators as Models for Adaptation to Extreme Environments 7.5.3 Sodium Toxicity 7.5.4 Aluminium Toxicity and Tolerance 7.5.5 Non-Essential Toxic Metals Summary References 8 Biotic Stress 8.1 Plant Disease Caused by Pathogens 8.1.1 Types of Pathogens: Viruses, Bacteria, Fungi, Oomycetes and Nematodes 8.1.2 Pathogenicity Mechanisms 8.2 Plant Defences Against Microbial Pathogens and Viruses 8.2.1 Preformed Defences Against Bacteria, Fungi and Oomycetes 8.2.2 Inducible Local Defences 8.2.3 Inducible Systemic Resistance 8.2.4 Defence Against Viruses via Gene Silencing 8.3 Herbivory 8.3.1 Constitutive Defences 8.3.2 Inducible Defences Against Herbivores 8.3.3 How Plant–Herbivore Interactions Drive Genetic Diversity 8.4 Parasitic Plants 8.5 Allelopathy Summary References Part II Physiological and Biophysical Plant Ecology 9 Thermal Balance of Plants and Plant Communities 9.1 Energy Balance of the Atmospheric Boundary Layer 9.2 Microclimate Near the Ground Surface 9.2.1 Daily Changes in Temperature Near the Ground 9.2.2 Modification of Environmental Radiation and Temperature by Abiotic Factors 9.2.3 Modification of the Radiation Budget and Temperature by Biotic Factors 9.3 Energy Balance of Leaves 9.4 Acclimation and Adaptation to Temperature Extremes 9.4.1 Acclimation and Adaptation to High Temperatures 9.4.2 Acclimation and Adaptation to Low Temperatures Summary References 10 Water Relations 10.1 Water as an Environmental Factor 10.1.1 Water Use by Plants and Animals 10.1.2 Availability of Water on Earth 10.1.3 Drivers of Water Flow Between the Soil and the Atmosphere 10.2 Water Transport from the Soil to the Plant 10.2.1 Water Uptake 10.2.2 Xylem Water Transport 10.2.3 Phloem Water Transport 10.3 Transpiration 10.3.1 Stomatal Responses to Plant-Internal Factors 10.3.2 Stomatal Responses to Environmental Factors Summary References 11 Nutrient Relations 11.1 Availability of Soil Nutrients and Ion Use 11.1.1 Plant Nutrients 11.1.2 Availability of Nutrients in Soil 11.1.3 General Aspects of Plant Nutrition 11.1.4 Nutrient Deficiency and Excess 11.2 Nitrogen Nutrition 11.2.1 Nitrogen in Plant Metabolism 11.2.2 Nitrogen Uptake and Nutrition 11.2.3 Nitrogen Requirements for Growth 11.2.4 Nitrogen Storage 11.2.5 Insectivorous Plants 11.2.6 Nitrogen Deficiency and Excess 11.3 Sulphur Nutrition 11.3.1 Sulphur in Plant Metabolism 11.3.2 Sulphur Uptake and Plant Requirements 11.3.3 Indicators of Sulphur Deficiency and Excess 11.4 Phosphate Nutrition 11.4.1 Phosphorus in Plant Metabolism 11.4.2 Phosphate Uptake and Plant Requirements 11.4.3 Indicators of Phosphorus Deficiency and Excess 11.5 Alkaline Cation Nutrition 11.5.1 Magnesium 11.5.2 Calcium 11.5.3 Potassium Summary References 12 Carbon Relations 12.1 Photosynthetic CO2 Uptake: Physiological and Physical Basis 12.1.1 Photosynthesis as a Diffusion Process 12.1.2 Evolution of C 3, C4 and Crassulacean Acid Metabolism Plant Species 12.2 Photosynthesis Models and Calculation of 13C/12C Fluxes (Contribution by A. Arneth) 12.2.1 RubisCO-Limited or RuBP-Saturated Rate (Av) 12.2.2 RuBP Regeneration–Dependent and Electron Transport–Limiting Rate (Aj) 12.2.3 Supply of CO 2 Through Stomata 12.2.4 13C/12C Discrimination 12.3 Specific Leaf Area, Nitrogen Concentrations and Photosynthetic Capacity 12.3.1 Specific Leaf Area 12.3.2 Maximum Rates of CO2 Assimilation 12.4 Response of Photosynthesis to Environmental Variables 12.4.1 Light Response of CO 2 Assimilation 12.4.2 Temperature Response of CO2 Assimilation 12.4.3 Relative Air Humidi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Call number: M 19.92459
    Type of Medium: Monograph available for loan
    Pages: XXIX, 2625 Seiten
    Edition: 6. Auflage
    ISBN: 9783406712661
    Language: German
    Location: Reading room/gallery
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
  • 6
    Publication Date: 2015-07-17
    Electronic ISSN: 2075-1729
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Schönke, Mischa; Wiesenberg, Lars; Schulze, Inken; Wilken, Dennis; Darr, Alexander; Papenmeier, Svenja; Feldens, Peter (2019): Impact of Sparse Benthic Life on Seafloor Roughness and High-Frequency Acoustic Scatter. Geoscience, 9(10), 454, https://doi.org/10.3390/geosciences9100454
    Publication Date: 2023-01-13
    Description: - recoded 200kHz backscatter multibeam data (HSX-file format) by a NORBIT iWBMSe multibeam echo sounder system (17 GB, 13 files) - recoded single beam acoustic data (SEGY) by the lander system (BENTHOWAVE INSTRUMENT INC) (50 MB, 17 files) - recoded point cloud optic data (.xyz-ASCII file) by the lander ULS 200 laser system (Robotics Inc.) (1 GB, 170 files) - Matlab script to preprocess optic data (.xyz-ASCII file) (10MB, 9 files) - Matlab script to preprocess acoustic data (SEGY) (11MB, 11 files)
    Keywords: Backscatter; File format; File name; File size; lander experiment; marine habitat mapping; surface roughness; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 868 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-01-13
    Keywords: Benthocosm_A1; Benthocosm_A2; Benthocosm_B1; Benthocosm_B2; Benthocosm_C1; Benthocosm_C2; Benthocosm_D1; Benthocosm_D2; Benthocosm_E1; Benthocosm_E2; Benthocosm_F1; Benthocosm_F2; Counting; Event label; Functional group; Growth rate; Kiel Fjord; Measured using software ImageJ; MESO; Mesocosm experiment; Sample code/label; Species; Survival; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 72 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-06
    Description: Baltic blue mussels colonise and dominate benthic habitats with much lower salinity than any other marine mytilid population globally. Surprisingly, all Baltic populations are hybrids of Mytilus edulis x M. trossulus genotypes with the former dominating hybrid genotypes in the western (high salinity) and the latter in the eastern part of the Baltic (low salinity). Here, we tested if low salinity selects for M. trossulus dominated hybrid genotypes and whether populations along the salinity gradient are locally adapted to their specific salinity regimes. Using laboratory larval rearing trials, we can show that Baltic M. trossulus hybrids have higher fitness when exposed to salinities 〈10 psu whereas Baltic M. edulis hybrids have higher fitness at a salinity of 16 psu. In addition, we can demonstrate that populations from the centre of the hybrid cline can be selected towards Baltic M. trossulus hybrids at low salinities, with allele shifts significantly beyond genetic drift expectations. We conclude that salinity driven selection can shape mussel populations and hence allows for local adaptation to extremely low environmental salinity. Future climate change driven desalination therefore has the potential to shift the Baltic Sea hybrid gradient to the west, with important implications for ecology and aquaculture.
    Type: Dataset
    Format: application/vnd.openxmlformats-officedocument.spreadsheetml.sheet, 67.6 kBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-06-24
    Description: This data set contains aboveground community plant biomass (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) and species-specific biomass from the sown species of the dominance experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the dominance experiment, 206 grassland plots of 3.5 x 3.5 m were established from a pool of 9 plant species that can be dominant in semi-natural grassland communities of the study region. In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 3, 4, 6, and 9 species). Plots were maintained by bi-annual weeding and mowing. Aboveground community biomass was harvested twice in May and August 2004 on all experimental plots of the dominance experiment. This was done by clipping the vegetation at 3 cm above ground in two rectangles of 0.2 x 0.5 m per experimental plot. The location of these rectangles was assigned by random selection of coordinates within the central area of the plots (excluding an outer edge of 50cm). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: individual species for the sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material, and remaining plant material that could not be assigned to any category. All biomass was dried to constant weight (70°C, 〉= 48 h) and weighed. Sown plant community biomass was calculated as the sum of the biomass of the individual sown species. The mean of both samples per plot and the individual measurements are provided in the data file. Overall, analyses of the community biomass data have identified species richness and the presence of particular species as an important driver of a positive biodiversity-productivity relationship.
    Keywords: Alopecurus pratensis, biomass as dry weight; Anthriscus sylvestris, biomass as dry weight; Arrhenatherum elatius, biomass as dry weight; Dactylis glomerata, biomass as dry weight; Date/time end; Date/time start; Dead plant material, biomass as dry weight; Dried biomass sample; EXP; Experiment; Experimental plot; Geranium pratense, biomass as dry weight; HEIGHT above ground; Height aboveground, maximum; Height aboveground, minimum; Jena Experiment 2004; JenExp; JenExp_2004; Phleum pratense, biomass as dry weight; Poa trivialis, biomass as dry weight; Replicate; Sown plant community, biomass as dry weight; The Jena Experiment; Thuringia, Germany; Trifolium pratense, biomass as dry weight; Trifolium repens, biomass as dry weight; Unidentified plant material, biomass as dry weight; Weeds plant community, biomass as dry weight
    Type: Dataset
    Format: text/tab-separated-values, 16350 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...