ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-03-31
    Description: Brown and beige adipose tissues can dissipate chemical energy as heat through thermogenic respiration, which requires uncoupling protein 1 (UCP1). Thermogenesis from these adipocytes can combat obesity and diabetes, encouraging investigation of factors that control UCP1-dependent respiration in vivo. Here we show that acutely activated thermogenesis in brown adipose tissue is defined by a substantial increase in levels of mitochondrial reactive oxygen species (ROS). Remarkably, this process supports in vivo thermogenesis, as pharmacological depletion of mitochondrial ROS results in hypothermia upon cold exposure, and inhibits UCP1-dependent increases in whole-body energy expenditure. We further establish that thermogenic ROS alter the redox status of cysteine thiols in brown adipose tissue to drive increased respiration, and that Cys253 of UCP1 is a key target. UCP1 Cys253 is sulfenylated during thermogenesis, while mutation of this site desensitizes the purine-nucleotide-inhibited state of the carrier to adrenergic activation and uncoupling. These studies identify mitochondrial ROS induction in brown adipose tissue as a mechanism that supports UCP1-dependent thermogenesis and whole-body energy expenditure, which opens the way to improved therapeutic strategies for combating metabolic disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chouchani, Edward T -- Kazak, Lawrence -- Jedrychowski, Mark P -- Lu, Gina Z -- Erickson, Brian K -- Szpyt, John -- Pierce, Kerry A -- Laznik-Bogoslavski, Dina -- Vetrivelan, Ramalingam -- Clish, Clary B -- Robinson, Alan J -- Gygi, Steve P -- Spiegelman, Bruce M -- DK31405/DK/NIDDK NIH HHS/ -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2016 Apr 7;532(7597):112-6. doi: 10.1038/nature17399. Epub 2016 Mar 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA. ; Department of Neurology, Harvard Medical School, Boston, Massachusetts 02215, USA. ; MRC Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27027295" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue, Brown/chemistry/cytology/metabolism ; Animals ; Cell Respiration ; Cysteine/*chemistry/genetics/metabolism ; *Energy Metabolism/drug effects ; Female ; Humans ; Ion Channels/*chemistry/deficiency/genetics/*metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mitochondria/drug effects/*metabolism ; Mitochondrial Proteins/*chemistry/deficiency/genetics/*metabolism ; Mutant Proteins/chemistry/genetics/metabolism ; Oxidation-Reduction ; Reactive Oxygen Species/*metabolism ; Sulfhydryl Compounds/metabolism ; *Thermogenesis/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-01-15
    Description: A unique population of Foxp3+CD4+ regulatory T (Treg) cells resides in visceral adipose tissue (VAT) of lean mice, especially in the epididymal fat depot. VAT Tregs are unusual in their very high representation within the CD4+ T-cell compartment, their transcriptome, and their repertoire of antigen-specific T-cell receptors. They are important...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-09-07
    Description: Adult hippocampal neurogenesis (AHN) is impaired before the onset of Alzheimer’s disease (AD) pathology. We found that exercise provided cognitive benefit to 5 x FAD mice, a mouse model of AD, by inducing AHN and elevating levels of brain-derived neurotrophic factor (BDNF). Neither stimulation of AHN alone, nor exercise, in the absence of increased AHN, ameliorated cognition. We successfully mimicked the beneficial effects of exercise on AD mice by genetically and pharmacologically inducing AHN in combination with elevating BDNF levels. Suppressing AHN later led to worsened cognitive performance and loss of preexisting dentate neurons. Thus, pharmacological mimetics of exercise, enhancing AHN and elevating BDNF levels, may improve cognition in AD. Furthermore, applied at early stages of AD, these mimetics may protect against subsequent neuronal cell death.
    Keywords: Medicine, Diseases, Neuroscience, Online Only
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...