ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (6)
Collection
Years
Year
  • 1
    Publication Date: 2023-02-01
    Description: While sliding at seismic slip-rates of ∼1 m/s, natural faults undergo an abrupt decrease of shear stress called dynamic weakening. Asperity-scale (〈〈mm) processes related to flash heating and weakening and, meso-scale (mm-cm) processes involving shear across the bulk slip-zone, related to frictional melting or viscous flow of minerals, have been invoked to explain pronounced velocity-dependent weakening. Here we present a compilation of ∼100 experiments performed with two rotary shear apparatuses. Cohesive rock cylinders of basalt, gabbro, granitoid rocks and calcitic marble were sheared at various values of effective normal stress (σneff = 5–40 MPa), target slip-rate (Vt = 0.1–6.5 m/s) and fluid pressure (Pf = 0–15 MPa). To account for the uncertainties of constitutive parameters, we introduce a norm-based optimization procedure on a set of model parameters by comparing the shear stress evolution inferred from the proposed weakening models with the shear stress measured during the experiments. We analyze the fit to experimental data of each weakening model and we discuss a composite model in which two weakening mechanisms (namely flash heating and bulk melting, flash heating and dislocation/diffusion creep) are used to test the hypothesis that they match the shear stress evolution in different slip ranges. We found that for slip smaller than a slip-switch distance δ0, the weakening is better described by mechanisms occurring at the asperity scale whereas for larger slip values the bulk model performs better. The inferred δ0 values decrease with normal stress suggesting that during earthquakes bulk mechanisms can govern shear stress evolution after a few centimeters of slip.
    Description: Published
    Description: e2022JB024356
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-11-21
    Description: High‐viscosity fluids are often used during hydraulic fracking operations in georeservoirs. Here we performed dedicated experiments to study the influence of fluid viscosity on fault reactivation and associated induced earthquakes. Experiments were conducted in the rotary‐shear machine Slow to HIgh Velocity Apparatus on experimental fault of Westerly granite saturated by fluids with increasing viscosity (at room temperature) from 0.1 mPa s (water) to 1.2 Pa s (99% glycerol). Fault reactivation was triggered at constant effective normal stress by increasing the shear stress acting on the fault. Our results showed that independent of the viscosity, fault reactivation followed a Coulomb‐failure criterion. Instead, fluid viscosity affected the fault weakening mechanism: flash heating was the dominant weakening mechanism in room humidity and water‐saturated conditions, whereas the presence of more viscous fluids favored the activation of elasto‐hydrodynamic lubrication. Independent of the weakening mechanism, the breakdown work Wb dissipated during seismic faulting increased with slip U following a power law (Wb ∝ U 1.25) in agreement with seismological estimates of natural and induced earthquakes.
    Description: Published
    Description: e2019JB018883
    Description: 3T. Sorgente sismica
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-19
    Description: Large seismogenic faults consist of approximately meter-thick fault cores surrounded by hundreds-of-meters-thick damage zones. Earthquakes are generated by rupture propagation and slip within fault cores and dissipate the stored elastic strain energy in fracture and frictional processes in the fault zone and in radiated seismic waves. Understanding this energy partitioning is fundamental in earthquake mechanics to explain fault dynamic weakening and causative rupture processes operating over different spatial and temporal scales. The energy dissipated in the earthquake rupture propagation along a fault is called fracture energy or breakdown work. Here we review fracture energy estimates from seismological, modeling, geological, and experimental studies and show that fracture energy scales with fault slip. We conclude that although material-dependent constant fracture energies are important at the microscale for fracturing grains of the fault zone, they are negligible with respect to the macroscale processes governing rupture propagation on natural faults.
    Description: Published
    Description: 217-252
    Description: OST3 Vicino alla faglia
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-20
    Description: Earthquakes often occur along faults in the presence of hot, pressurized water. Here we exploit a new experimental device to study friction in gabbro faults with water in vapor, liquid and supercritical states (water temperature and pressure up to 400 °C and 30 MPa, respectively). The experimental faults are sheared over slip velocities from 1 μm/s to 100 mm/s and slip distances up to 3 m (seismic deformation conditions). Here, we show with water in the vapor state, fault friction decreases with increasing slip distance and velocity. However, when water is in the liquid or supercritical state, friction decreases with slip distance, regardless of slip velocity. We propose that the formation of weak minerals, the chemical bonding properties of water and (elasto)hydrodynamic lubrication may explain the weakening behavior of the experimental faults. In nature, the transition of water from liquid or supercritical to vapor state can cause an abrupt increase in fault friction that can stop or delay the nucleation phase of an earthquake.
    Description: Published
    Description: 4612
    Description: OST3 Vicino alla faglia
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-03-20
    Description: The frictional power per unit area (product of frictional traction τ and slip rate in MW m−2) dissipated during earthquakes triggers fault dynamic weakening mechanisms that control rupture nucleation, propagation and arrest. Although of great relevance in earthquake mechanics, cannot, with rare exceptions, be determined by geophysical methods. Here we exploit theoretical, experimental and geological constraints to estimate dissipated on a fault patch exhumed from 7-9 km depth. According to theoretical models, in polymineralic, silicate rocks the amplitude (〈 1 mm) of the grain-scale roughness of the boundary between frictional melt (pseudotachylyte) and host rock decreases with increasing . The dependence of grain-scale roughness with is due to differential melt front migration in the host rock minerals. This dependence is confirmed by friction experiments reproducing seismic slip where pseudotachylytes were produced by shearing tonalite at ranging from 5 to 25 MW m−2. In natural pseudotachylytes across tonalites, the grain-scale roughness broadly decreases from extensional to compressional fault domains where lower and higher are expected, respectively. Analysis of the natural dataset calibrated by experiments yields values in the range of 4-60 MW m−2 (16 MW m−2 average value). These values, estimated in small fault patches, are at the lower end of broad estimates of (3-300 MW m−2) obtained from frictional tractions (30-300 MPa) and fault slip rates (0.1-1 m/s) assumed as typical of upper crustal earthquakes.
    Description: Published
    Description: 118057
    Description: OST3 Vicino alla faglia
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-11
    Description: Dynamic fault strength τ (rock friction in the broad sense) and its evolution with seismic slip and slip rate are among the most relevant parameters in earthquake mechanics. Given the large slip rate (1 m s−1 on average), displacement (up to tens of meters), effective stress (tens of MPa), typical of seismic faulting at depth, thermo-mechanical effects become outstanding: dynamic fault strength is severely affected by fluid and rock phase changes, extreme grain size reduction, and the production of amorphous and unstable materials in the slipping zone. Here, first we will summarize the most relevant findings about dynamic fault strength during seismic slip mainly obtained thanks to the exploitation of dedicated experimental machines (i.e., rotary shear apparatus). However, the interpretation of this experimental dataset remains debated because of technical limitations which impede us to measure fundamental parameters such as temperature, strain rate, pore fluid pressure and grain size in the slipping zone. Without a sound estimate of these physical parameters, any constitutive law proposed to describe the evolution of dynamic fault strength during simulated seismic slip remains speculative. Then, we will discuss the results of some recent experiments which exploit new technical approaches to overcome the main limitations of the previous studies. The experimental approach, together with field studies of the geometry and architecture of exhumed faults and modelling, remains our most powerful tool to investigate seismic-related deformation mechanisms in both natural and human-induced earthquakes.
    Description: Unpublished
    Description: ISRM Regional Symposium - 11th Asian Rock Mechanics Symposium October 21–25, 2021 Beijing, China
    Description: OST3 Vicino alla faglia
    Keywords: earthquakes ; rock mechanics ; structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...